Generators for the semigroup of endomorphisms of an independence Algebra
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/3814 |
Resumo: | Given an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents. |
id |
RCAP_8203665e9c1e1ef18d6991f7d9a98e53 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/3814 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generators for the semigroup of endomorphisms of an independence AlgebraSemigroupsIndependence algebrasEndomorphismsGeneratorsGiven an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents.Repositório AbertoAraújo, João2015-03-24T17:32:22Z20022002-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/3814porAraújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-111005-3867info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:19:12Zoai:repositorioaberto.uab.pt:10400.2/3814Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:45:00.619254Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generators for the semigroup of endomorphisms of an independence Algebra |
title |
Generators for the semigroup of endomorphisms of an independence Algebra |
spellingShingle |
Generators for the semigroup of endomorphisms of an independence Algebra Araújo, João Semigroups Independence algebras Endomorphisms Generators |
title_short |
Generators for the semigroup of endomorphisms of an independence Algebra |
title_full |
Generators for the semigroup of endomorphisms of an independence Algebra |
title_fullStr |
Generators for the semigroup of endomorphisms of an independence Algebra |
title_full_unstemmed |
Generators for the semigroup of endomorphisms of an independence Algebra |
title_sort |
Generators for the semigroup of endomorphisms of an independence Algebra |
author |
Araújo, João |
author_facet |
Araújo, João |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Araújo, João |
dc.subject.por.fl_str_mv |
Semigroups Independence algebras Endomorphisms Generators |
topic |
Semigroups Independence algebras Endomorphisms Generators |
description |
Given an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 2002-01-01T00:00:00Z 2015-03-24T17:32:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/3814 |
url |
http://hdl.handle.net/10400.2/3814 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Araújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-11 1005-3867 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135021450133504 |