Generators for the semigroup of endomorphisms of an independence Algebra

Detalhes bibliográficos
Autor(a) principal: Araújo, João
Data de Publicação: 2002
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/3814
Resumo: Given an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents.
id RCAP_8203665e9c1e1ef18d6991f7d9a98e53
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/3814
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Generators for the semigroup of endomorphisms of an independence AlgebraSemigroupsIndependence algebrasEndomorphismsGeneratorsGiven an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents.Repositório AbertoAraújo, João2015-03-24T17:32:22Z20022002-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/3814porAraújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-111005-3867info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:19:12Zoai:repositorioaberto.uab.pt:10400.2/3814Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:45:00.619254Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Generators for the semigroup of endomorphisms of an independence Algebra
title Generators for the semigroup of endomorphisms of an independence Algebra
spellingShingle Generators for the semigroup of endomorphisms of an independence Algebra
Araújo, João
Semigroups
Independence algebras
Endomorphisms
Generators
title_short Generators for the semigroup of endomorphisms of an independence Algebra
title_full Generators for the semigroup of endomorphisms of an independence Algebra
title_fullStr Generators for the semigroup of endomorphisms of an independence Algebra
title_full_unstemmed Generators for the semigroup of endomorphisms of an independence Algebra
title_sort Generators for the semigroup of endomorphisms of an independence Algebra
author Araújo, João
author_facet Araújo, João
author_role author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Araújo, João
dc.subject.por.fl_str_mv Semigroups
Independence algebras
Endomorphisms
Generators
topic Semigroups
Independence algebras
Endomorphisms
Generators
description Given an independence algebra A of infinite rank, we denote the endomorphism monoid and the automorphism group of A by End(A)and Aut(A) respectively. This paper is concerned with finding minimal subsets R of End(A) such that Aut(A) [ E(End(A)) [ R is a generating set for End(A), where E(End(A)) denotes its set of idempotents.
publishDate 2002
dc.date.none.fl_str_mv 2002
2002-01-01T00:00:00Z
2015-03-24T17:32:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/3814
url http://hdl.handle.net/10400.2/3814
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Araújo, João - Generators for the semigroup of endomorphisms of an independence Algebra. "Algebra Colloquium" [Em linha]. ISSN 1005-3867 (Print) 0219-1733 (Online). Vol. 9, nº 4 (2002), p. 1-11
1005-3867
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135021450133504