Computational modeling of In vitro swelling of mitochondria: A biophysical approach

Detalhes bibliográficos
Autor(a) principal: Makarov, Vladimir I.
Data de Publicação: 2018
Outros Autores: Khmelinskii, Igor, Javadov, Sabzali
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11077
Resumo: Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.
id RCAP_822fb867da22bb5993c3becefd0b41f4
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11077
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Computational modeling of In vitro swelling of mitochondria: A biophysical approachPermeability Transition PoreInner MembraneAtp SynthaseCell-DeathMathematical-ModelCalcium UniporterChannelOscillationsHeartCa2+Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.National Institute of General Medical Sciences of the National Institutes of Health [SC1GM128210]; Puerto Rico Institute for Functional Nanomaterials (National Science Foundation Grant) [1002410]; National Aeronautics and Space Administration (NASA) Puerto Rico Established Program to Stimulate Competitive Research (EPSCoR) [NNX15AK43A]MDPISapientiaMakarov, Vladimir I.Khmelinskii, IgorJavadov, Sabzali2018-12-07T14:52:25Z2018-042018-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11077eng1420-304910.3390/molecules23040783info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:22:49Zoai:sapientia.ualg.pt:10400.1/11077Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:36.469237Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Computational modeling of In vitro swelling of mitochondria: A biophysical approach
title Computational modeling of In vitro swelling of mitochondria: A biophysical approach
spellingShingle Computational modeling of In vitro swelling of mitochondria: A biophysical approach
Makarov, Vladimir I.
Permeability Transition Pore
Inner Membrane
Atp Synthase
Cell-Death
Mathematical-Model
Calcium Uniporter
Channel
Oscillations
Heart
Ca2+
title_short Computational modeling of In vitro swelling of mitochondria: A biophysical approach
title_full Computational modeling of In vitro swelling of mitochondria: A biophysical approach
title_fullStr Computational modeling of In vitro swelling of mitochondria: A biophysical approach
title_full_unstemmed Computational modeling of In vitro swelling of mitochondria: A biophysical approach
title_sort Computational modeling of In vitro swelling of mitochondria: A biophysical approach
author Makarov, Vladimir I.
author_facet Makarov, Vladimir I.
Khmelinskii, Igor
Javadov, Sabzali
author_role author
author2 Khmelinskii, Igor
Javadov, Sabzali
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Makarov, Vladimir I.
Khmelinskii, Igor
Javadov, Sabzali
dc.subject.por.fl_str_mv Permeability Transition Pore
Inner Membrane
Atp Synthase
Cell-Death
Mathematical-Model
Calcium Uniporter
Channel
Oscillations
Heart
Ca2+
topic Permeability Transition Pore
Inner Membrane
Atp Synthase
Cell-Death
Mathematical-Model
Calcium Uniporter
Channel
Oscillations
Heart
Ca2+
description Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-07T14:52:25Z
2018-04
2018-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11077
url http://hdl.handle.net/10400.1/11077
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1420-3049
10.3390/molecules23040783
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133260769394688