Robust partial least squares path modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/107263 |
Resumo: | Schamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47(1), 307-334. https://doi.org/10.1007/s41237-019-00088-2 |
id |
RCAP_823a1e4997da24a9a8f7330bc5cf9417 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/107263 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Robust partial least squares path modelingCompositesOutliersRobust consistent partial least squaresRobust correlationRobust partial least squares path modelingAnalysisApplied MathematicsClinical PsychologyExperimental and Cognitive PsychologySchamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47(1), 307-334. https://doi.org/10.1007/s41237-019-00088-2Outliers can seriously distort the results of statistical analyses and thus threaten the validity of structural equation models. As a remedy, this article introduces a robust variant of Partial Least Squares Path Modeling (PLS) and consistent Partial Least Squares (PLSc) called robust PLS and robust PLSc, respectively, which are robust against distortion caused by outliers. Consequently, robust PLS/PLSc allows to estimate structural models containing constructs modeled as composites and common factors even if empirical data are contaminated by outliers. A Monte Carlo simulation with various population models, sample sizes, and extents of outliers shows that robust PLS/PLSc can deal with outlier shares of up to 50 % without distorting the estimates. The simulation also shows that robust PLS/PLSc should always be preferred over its traditional counterparts if the data contain outliers. To demonstrate the relevance for empirical research, robust PLSc is applied to two empirical examples drawn from the extant literature.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNSchamberger, TamaraSchuberth, FlorianHenseler, JörgDijkstra, Theo K.2020-11-16T23:59:26Z2020-01-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article28application/pdfhttp://hdl.handle.net/10362/107263eng0385-7417PURE: 26409918https://doi.org/10.1007/s41237-019-00088-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:51:58Zoai:run.unl.pt:10362/107263Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:54.456969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Robust partial least squares path modeling |
title |
Robust partial least squares path modeling |
spellingShingle |
Robust partial least squares path modeling Schamberger, Tamara Composites Outliers Robust consistent partial least squares Robust correlation Robust partial least squares path modeling Analysis Applied Mathematics Clinical Psychology Experimental and Cognitive Psychology |
title_short |
Robust partial least squares path modeling |
title_full |
Robust partial least squares path modeling |
title_fullStr |
Robust partial least squares path modeling |
title_full_unstemmed |
Robust partial least squares path modeling |
title_sort |
Robust partial least squares path modeling |
author |
Schamberger, Tamara |
author_facet |
Schamberger, Tamara Schuberth, Florian Henseler, Jörg Dijkstra, Theo K. |
author_role |
author |
author2 |
Schuberth, Florian Henseler, Jörg Dijkstra, Theo K. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Schamberger, Tamara Schuberth, Florian Henseler, Jörg Dijkstra, Theo K. |
dc.subject.por.fl_str_mv |
Composites Outliers Robust consistent partial least squares Robust correlation Robust partial least squares path modeling Analysis Applied Mathematics Clinical Psychology Experimental and Cognitive Psychology |
topic |
Composites Outliers Robust consistent partial least squares Robust correlation Robust partial least squares path modeling Analysis Applied Mathematics Clinical Psychology Experimental and Cognitive Psychology |
description |
Schamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47(1), 307-334. https://doi.org/10.1007/s41237-019-00088-2 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-16T23:59:26Z 2020-01-01 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/107263 |
url |
http://hdl.handle.net/10362/107263 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0385-7417 PURE: 26409918 https://doi.org/10.1007/s41237-019-00088-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
28 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138022688555008 |