On Connectedness via Closure Operators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7747 https://doi.org/10.1023/A:1012512306420 |
Resumo: | This paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps. |
id |
RCAP_823b8916534124a9b5c590ed2f7ea9c0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7747 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Connectedness via Closure OperatorsThis paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps.2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7747http://hdl.handle.net/10316/7747https://doi.org/10.1023/A:1012512306420engApplied Categorical Structures. 9:6 (2001) 539-556Clementino, Maria Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:41Zoai:estudogeral.uc.pt:10316/7747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:45.103489Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Connectedness via Closure Operators |
title |
On Connectedness via Closure Operators |
spellingShingle |
On Connectedness via Closure Operators Clementino, Maria Manuel |
title_short |
On Connectedness via Closure Operators |
title_full |
On Connectedness via Closure Operators |
title_fullStr |
On Connectedness via Closure Operators |
title_full_unstemmed |
On Connectedness via Closure Operators |
title_sort |
On Connectedness via Closure Operators |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel |
author_role |
author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel |
description |
This paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7747 http://hdl.handle.net/10316/7747 https://doi.org/10.1023/A:1012512306420 |
url |
http://hdl.handle.net/10316/7747 https://doi.org/10.1023/A:1012512306420 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Categorical Structures. 9:6 (2001) 539-556 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897633562624 |