On Connectedness via Closure Operators

Detalhes bibliográficos
Autor(a) principal: Clementino, Maria Manuel
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7747
https://doi.org/10.1023/A:1012512306420
Resumo: This paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps.
id RCAP_823b8916534124a9b5c590ed2f7ea9c0
oai_identifier_str oai:estudogeral.uc.pt:10316/7747
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On Connectedness via Closure OperatorsThis paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps.2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7747http://hdl.handle.net/10316/7747https://doi.org/10.1023/A:1012512306420engApplied Categorical Structures. 9:6 (2001) 539-556Clementino, Maria Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:41Zoai:estudogeral.uc.pt:10316/7747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:45.103489Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On Connectedness via Closure Operators
title On Connectedness via Closure Operators
spellingShingle On Connectedness via Closure Operators
Clementino, Maria Manuel
title_short On Connectedness via Closure Operators
title_full On Connectedness via Closure Operators
title_fullStr On Connectedness via Closure Operators
title_full_unstemmed On Connectedness via Closure Operators
title_sort On Connectedness via Closure Operators
author Clementino, Maria Manuel
author_facet Clementino, Maria Manuel
author_role author
dc.contributor.author.fl_str_mv Clementino, Maria Manuel
description This paper describes a convenient modification of the approach presented in the paper “Closure operators and connectedness” by G. Castellini and D. Hajek, which is shown to give a suitable generalization of left- and right-constant subcategories, both at the object and the morphism levels. We show in particular that the framework we introduce here allows the simultaneous study of the classes of connected topological spaces, of concordant continuous maps and of monotone continuous maps.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7747
http://hdl.handle.net/10316/7747
https://doi.org/10.1023/A:1012512306420
url http://hdl.handle.net/10316/7747
https://doi.org/10.1023/A:1012512306420
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Categorical Structures. 9:6 (2001) 539-556
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897633562624