Common medical and statistical problems

Detalhes bibliográficos
Autor(a) principal: Oliveira, M. Rosário
Data de Publicação: 2020
Outros Autores: Subtil, Ana, Gonçalves, Luzia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/116610
Resumo: Sample size calculation in biomedical practice is typically based on the problematicWald method for a binomial proportion, with potentially dangerous consequences. This work highlights the need of incorporating the concept of conditional probability in sample size determination to avoid reduced sample sizes that lead to inadequate confidence intervals. Therefore, new definitions are proposed for coverage probability and expected length of confidence intervals for conditional probabilities, like sensitivity and specificity. The new definitions were used to assess seven confidence interval estimation methods. In order to determine the sample size, two procedures-an optimal one, based on the new definitions, and an approximation-were developed for each estimation method. Our findings confirm the similarity of the approximated sample sizes to the optimal ones. R code is provided to disseminate these methodological advances and translate them into biomedical practice.
id RCAP_82c3202f7937ab022b537e55931f4f7f
oai_identifier_str oai:run.unl.pt:10362/116610
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Common medical and statistical problemsthe dilemma of the sample size calculation for sensitivity and specificity estimationConditional probabilityCoverage probabilitySample sizeSensitivitySpecificityApplied MathematicsSample size calculation in biomedical practice is typically based on the problematicWald method for a binomial proportion, with potentially dangerous consequences. This work highlights the need of incorporating the concept of conditional probability in sample size determination to avoid reduced sample sizes that lead to inadequate confidence intervals. Therefore, new definitions are proposed for coverage probability and expected length of confidence intervals for conditional probabilities, like sensitivity and specificity. The new definitions were used to assess seven confidence interval estimation methods. In order to determine the sample size, two procedures-an optimal one, based on the new definitions, and an approximation-were developed for each estimation method. Our findings confirm the similarity of the approximated sample sizes to the optimal ones. R code is provided to disseminate these methodological advances and translate them into biomedical practice.Instituto de Higiene e Medicina Tropical (IHMT)Global Health and Tropical Medicine (GHTM)Population health, policies and services (PPS)RUNOliveira, M. RosárioSubtil, AnaGonçalves, Luzia2021-05-01T22:51:15Z2020-08-012020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfhttp://hdl.handle.net/10362/116610engPURE: 19727604https://doi.org/10.3390/MATH8081258info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:59:16Zoai:run.unl.pt:10362/116610Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:09.840812Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Common medical and statistical problems
the dilemma of the sample size calculation for sensitivity and specificity estimation
title Common medical and statistical problems
spellingShingle Common medical and statistical problems
Oliveira, M. Rosário
Conditional probability
Coverage probability
Sample size
Sensitivity
Specificity
Applied Mathematics
title_short Common medical and statistical problems
title_full Common medical and statistical problems
title_fullStr Common medical and statistical problems
title_full_unstemmed Common medical and statistical problems
title_sort Common medical and statistical problems
author Oliveira, M. Rosário
author_facet Oliveira, M. Rosário
Subtil, Ana
Gonçalves, Luzia
author_role author
author2 Subtil, Ana
Gonçalves, Luzia
author2_role author
author
dc.contributor.none.fl_str_mv Instituto de Higiene e Medicina Tropical (IHMT)
Global Health and Tropical Medicine (GHTM)
Population health, policies and services (PPS)
RUN
dc.contributor.author.fl_str_mv Oliveira, M. Rosário
Subtil, Ana
Gonçalves, Luzia
dc.subject.por.fl_str_mv Conditional probability
Coverage probability
Sample size
Sensitivity
Specificity
Applied Mathematics
topic Conditional probability
Coverage probability
Sample size
Sensitivity
Specificity
Applied Mathematics
description Sample size calculation in biomedical practice is typically based on the problematicWald method for a binomial proportion, with potentially dangerous consequences. This work highlights the need of incorporating the concept of conditional probability in sample size determination to avoid reduced sample sizes that lead to inadequate confidence intervals. Therefore, new definitions are proposed for coverage probability and expected length of confidence intervals for conditional probabilities, like sensitivity and specificity. The new definitions were used to assess seven confidence interval estimation methods. In order to determine the sample size, two procedures-an optimal one, based on the new definitions, and an approximation-were developed for each estimation method. Our findings confirm the similarity of the approximated sample sizes to the optimal ones. R code is provided to disseminate these methodological advances and translate them into biomedical practice.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-01
2020-08-01T00:00:00Z
2021-05-01T22:51:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/116610
url http://hdl.handle.net/10362/116610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PURE: 19727604
https://doi.org/10.3390/MATH8081258
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 17
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138041885884416