Maritime modular anomaly detection framework

Detalhes bibliográficos
Autor(a) principal: Machado, Tomás Manuel Cardoso
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/17590
Resumo: Detecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems.
id RCAP_82dfa6a19a43bbaf8ba129854a4392b4
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/17590
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Maritime modular anomaly detection frameworkMaritime frameworkAnomaly detectionAIS dataEngenharia informáticaSegurança marítimaPrevenção de riscosMétodo de detecçãoAnálise de dadosDesenho de sistemasDetecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems.Detetar anomalias marítimas é uma tarefa extremamente importante para agências marítimas á escala mundial. Com o número de embarcações em mar crescendo exponencial, a necessidade de desenvolver novas rotinas de suporte ás suas atividades e de atualizar as tecnologias existentes é inegável. MARISA, o projeto de Conscientização da Vigilância Integrada Marítima, visa fomentar a colaboração entre 22 organizações governamentais e melhorar as capacidades de reação e tomada de decisões das autoridades marítimas. Este trabalho descreve as nossas contribuições para o desenvolvimento do toolkit global MARISA, que tem como âmbito a deteção de anomalias marítimas. Estas contribuições servem como parte do desenvolvimento da Modular Anomaly Detection Framework (MAD-F), que serve como um data-pipeline completo que transforma dados de embarcações não estruturados em potenciais anomalias, através do uso de métodos eficientes para tal. As anomalias consideradas para este trabalho foram definidas através do projeto MARISA por especialistas marítimos, e permitiram-nos trabalhar em necessidades reais e atuais do sector. As funcionalidades desenvolvidas serão validadas através de exercícios marítimos reias. No estado atual do MAD-F acreditamos que este será capaz de apoiar agências marítimas, e de posteriormente ser integrado nos sistemas dos mesmos.2019-03-13T14:15:30Z2020-03-13T00:00:00Z2018-12-14T00:00:00Z2018-12-142018-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/17590TID:202108708engMachado, Tomás Manuel Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:38:25Zoai:repositorio.iscte-iul.pt:10071/17590Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:17:36.325141Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Maritime modular anomaly detection framework
title Maritime modular anomaly detection framework
spellingShingle Maritime modular anomaly detection framework
Machado, Tomás Manuel Cardoso
Maritime framework
Anomaly detection
AIS data
Engenharia informática
Segurança marítima
Prevenção de riscos
Método de detecção
Análise de dados
Desenho de sistemas
title_short Maritime modular anomaly detection framework
title_full Maritime modular anomaly detection framework
title_fullStr Maritime modular anomaly detection framework
title_full_unstemmed Maritime modular anomaly detection framework
title_sort Maritime modular anomaly detection framework
author Machado, Tomás Manuel Cardoso
author_facet Machado, Tomás Manuel Cardoso
author_role author
dc.contributor.author.fl_str_mv Machado, Tomás Manuel Cardoso
dc.subject.por.fl_str_mv Maritime framework
Anomaly detection
AIS data
Engenharia informática
Segurança marítima
Prevenção de riscos
Método de detecção
Análise de dados
Desenho de sistemas
topic Maritime framework
Anomaly detection
AIS data
Engenharia informática
Segurança marítima
Prevenção de riscos
Método de detecção
Análise de dados
Desenho de sistemas
description Detecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-14T00:00:00Z
2018-12-14
2018-10
2019-03-13T14:15:30Z
2020-03-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/17590
TID:202108708
url http://hdl.handle.net/10071/17590
identifier_str_mv TID:202108708
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134734654111744