Maritime modular anomaly detection framework
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/17590 |
Resumo: | Detecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems. |
id |
RCAP_82dfa6a19a43bbaf8ba129854a4392b4 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/17590 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Maritime modular anomaly detection frameworkMaritime frameworkAnomaly detectionAIS dataEngenharia informáticaSegurança marítimaPrevenção de riscosMétodo de detecçãoAnálise de dadosDesenho de sistemasDetecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems.Detetar anomalias marítimas é uma tarefa extremamente importante para agências marítimas á escala mundial. Com o número de embarcações em mar crescendo exponencial, a necessidade de desenvolver novas rotinas de suporte ás suas atividades e de atualizar as tecnologias existentes é inegável. MARISA, o projeto de Conscientização da Vigilância Integrada Marítima, visa fomentar a colaboração entre 22 organizações governamentais e melhorar as capacidades de reação e tomada de decisões das autoridades marítimas. Este trabalho descreve as nossas contribuições para o desenvolvimento do toolkit global MARISA, que tem como âmbito a deteção de anomalias marítimas. Estas contribuições servem como parte do desenvolvimento da Modular Anomaly Detection Framework (MAD-F), que serve como um data-pipeline completo que transforma dados de embarcações não estruturados em potenciais anomalias, através do uso de métodos eficientes para tal. As anomalias consideradas para este trabalho foram definidas através do projeto MARISA por especialistas marítimos, e permitiram-nos trabalhar em necessidades reais e atuais do sector. As funcionalidades desenvolvidas serão validadas através de exercícios marítimos reias. No estado atual do MAD-F acreditamos que este será capaz de apoiar agências marítimas, e de posteriormente ser integrado nos sistemas dos mesmos.2019-03-13T14:15:30Z2020-03-13T00:00:00Z2018-12-14T00:00:00Z2018-12-142018-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/17590TID:202108708engMachado, Tomás Manuel Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:38:25Zoai:repositorio.iscte-iul.pt:10071/17590Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:17:36.325141Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Maritime modular anomaly detection framework |
title |
Maritime modular anomaly detection framework |
spellingShingle |
Maritime modular anomaly detection framework Machado, Tomás Manuel Cardoso Maritime framework Anomaly detection AIS data Engenharia informática Segurança marítima Prevenção de riscos Método de detecção Análise de dados Desenho de sistemas |
title_short |
Maritime modular anomaly detection framework |
title_full |
Maritime modular anomaly detection framework |
title_fullStr |
Maritime modular anomaly detection framework |
title_full_unstemmed |
Maritime modular anomaly detection framework |
title_sort |
Maritime modular anomaly detection framework |
author |
Machado, Tomás Manuel Cardoso |
author_facet |
Machado, Tomás Manuel Cardoso |
author_role |
author |
dc.contributor.author.fl_str_mv |
Machado, Tomás Manuel Cardoso |
dc.subject.por.fl_str_mv |
Maritime framework Anomaly detection AIS data Engenharia informática Segurança marítima Prevenção de riscos Método de detecção Análise de dados Desenho de sistemas |
topic |
Maritime framework Anomaly detection AIS data Engenharia informática Segurança marítima Prevenção de riscos Método de detecção Análise de dados Desenho de sistemas |
description |
Detecting maritime anomalies is an extremely important task for maritime agencies around the globe. With the number of vessels at seas growing exponentially, the need for novel automated methods to support them with their routines and upgrade existing technologies is undeniable. MARISA, the Maritime Integrated Surveillance Awareness project, aims at fostering collaboration between 22 governmental organisations and enhance the reaction and decision-making capabilities of the maritime authorities. This work describes our contributions to the development of MARISA’s common toolkit for the detection of maritime anomalies. These efforts, as part of a Masters’ dissertation, lead to the development of the Modular Anomaly Detection Framework, MAD-F, a full data pipe-line which applies efficient and reliable routines to raw vessel navigational data in order to output potential maritime vessel anomalies. The anomalies considered for this work were defined by the experts from various maritime institutions, through MARISA, and allowed us to implement solutions given the real needs in the industry. The MADF functionalities will be validated through actual real maritime exercises. In its current state, we believe that the MAD-F is able to support maritime agencies and be integrated into their legacy systems. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-14T00:00:00Z 2018-12-14 2018-10 2019-03-13T14:15:30Z 2020-03-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/17590 TID:202108708 |
url |
http://hdl.handle.net/10071/17590 |
identifier_str_mv |
TID:202108708 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134734654111744 |