SSTS: A syntactic tool for pattern search on time series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148743 |
Resumo: | We would like to acknowledge the financial support obtained from North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM), NORTE-01-0145-FEDER-000026. We would like to acknowledge as well the projects AHA CMUP-ERI/HCI/0046 and INSIDE CMUP-ERI/HCI/051/2013 both financed by Fundcao para a Ciencia e Tecnologia (FCT). |
id |
RCAP_83292a6d841ce95470219beb6fb4e0fc |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148743 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
SSTS: A syntactic tool for pattern search on time seriesGrammarMeta symbolic languageQuery searchRegular expressionSignal processingTime seriesInformation SystemsMedia TechnologyComputer Science ApplicationsManagement Science and Operations ResearchLibrary and Information SciencesWe would like to acknowledge the financial support obtained from North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM), NORTE-01-0145-FEDER-000026. We would like to acknowledge as well the projects AHA CMUP-ERI/HCI/0046 and INSIDE CMUP-ERI/HCI/051/2013 both financed by Fundcao para a Ciencia e Tecnologia (FCT).Nowadays, data scientists are capable of manipulating and extracting complex information from time series data, given the current diversity of tools at their disposal. However, the plethora of tools that target data exploration and pattern search may require an extensive amount of time to develop methods that correspond to the data scientist's reasoning, in order to solve their queries. The development of new methods, tightly related with the reasoning and visual analysis of time series data, is of great relevance to improving complexity and productivity of pattern and query search tasks. In this work, we propose a novel tool, capable of exploring time series data for pattern and query search tasks in a set of 3 symbolic steps: Pre-Processing, Symbolic Connotation and Search. The framework is called SSTS (Symbolic Search in Time Series) and uses regular expression queries to search the desired patterns in a symbolic representation of the signal. By adopting a set of symbolic methods, this approach has the purpose of increasing the expressiveness in solving standard pattern and query tasks, enabling the creation of queries more closely related to the reasoning and visual analysis of the signal. We demonstrate the tool's effectiveness by presenting 9 examples with several types of queries on time series. The SSTS queries were compared with standard code developed in Python, in terms of cognitive effort, vocabulary required, code length, volume, interpretation and difficulty metrics based on the Halstead complexity measures. The results demonstrate that this methodology is a valid approach and delivers a new abstraction layer on data analysis of time series.DF – Departamento de FísicaLIBPhys-UNLRUNRodrigues, JoãoFolgado, DuarteBelo, DavidGamboa, Hugo2023-02-06T22:14:53Z2019-01-012019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/148743eng0306-4573PURE: 11710926https://doi.org/10.1016/j.ipm.2018.09.001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:30:24Zoai:run.unl.pt:10362/148743Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:28.155791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
SSTS: A syntactic tool for pattern search on time series |
title |
SSTS: A syntactic tool for pattern search on time series |
spellingShingle |
SSTS: A syntactic tool for pattern search on time series Rodrigues, João Grammar Meta symbolic language Query search Regular expression Signal processing Time series Information Systems Media Technology Computer Science Applications Management Science and Operations Research Library and Information Sciences |
title_short |
SSTS: A syntactic tool for pattern search on time series |
title_full |
SSTS: A syntactic tool for pattern search on time series |
title_fullStr |
SSTS: A syntactic tool for pattern search on time series |
title_full_unstemmed |
SSTS: A syntactic tool for pattern search on time series |
title_sort |
SSTS: A syntactic tool for pattern search on time series |
author |
Rodrigues, João |
author_facet |
Rodrigues, João Folgado, Duarte Belo, David Gamboa, Hugo |
author_role |
author |
author2 |
Folgado, Duarte Belo, David Gamboa, Hugo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, João Folgado, Duarte Belo, David Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Grammar Meta symbolic language Query search Regular expression Signal processing Time series Information Systems Media Technology Computer Science Applications Management Science and Operations Research Library and Information Sciences |
topic |
Grammar Meta symbolic language Query search Regular expression Signal processing Time series Information Systems Media Technology Computer Science Applications Management Science and Operations Research Library and Information Sciences |
description |
We would like to acknowledge the financial support obtained from North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM), NORTE-01-0145-FEDER-000026. We would like to acknowledge as well the projects AHA CMUP-ERI/HCI/0046 and INSIDE CMUP-ERI/HCI/051/2013 both financed by Fundcao para a Ciencia e Tecnologia (FCT). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2019-01-01T00:00:00Z 2023-02-06T22:14:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148743 |
url |
http://hdl.handle.net/10362/148743 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0306-4573 PURE: 11710926 https://doi.org/10.1016/j.ipm.2018.09.001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138125226704896 |