Effects of design parameters on damping of composite materials for aeronautical applications

Detalhes bibliográficos
Autor(a) principal: Lopes, João Pedro dos Santos
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/2016
Resumo: Many engineering projects have shown a great concern with the dynamic response of generalized mechanical systems where a set of rigorous demands are placed on the design of structures in sectors such as the aerospace or the automobile industries. Aerospace materials, for example, in most cases have been developed for a specific purpose, like some particular metal alloys and composites. It is their operation requirements that influence the optimization of certain intrinsic mechanical or physical properties. The dynamic behaviour of a structure can be refined by anticipating any performance-related problem during the design process, where vibration and others parameters can be measured and optimized for the desired applications. It is often desirable to be able to predict accurately the dynamic response of a structure under certain excitation conditions. Given that, it is necessary to understand how its mass, stiffness or damping properties could be modified to obtain a desired response and vibration control, taking into account structural margin of safety and life-time limits under service. Thus, the damping of such structures, which is associated to the energy dissipation capacity, is a key aspect regarding the fatigue endurance and noise/vibration control as it controls the amplitude of resonant vibration response. Envisaging to create a cheaper, direct and maintenance-free alternative to active damping systems, passive methods are a straightforward solution for certain industrial demands. In fact, active damping systems typically imply more structure weight, considerable energy consumption, reliability issues and limited strain/force response, which are undesired features in general technological applications, especially in the aerospace sector. To achieve high damping properties discarding the use of an active system, the use of some isolation techniques, the inclusion of high damping materials or even the need for physical structural modifications are often necessary in the standpoint of a new component’s development for passive control applications. As an example, in most recent investigations, co-curing/embedded viscoelastic damping constituents in composites has been a successful way to increase the damping capacity. In the context of the present work, a passive damping treatment method based on cork utilization as viscoelastic material has been used to improve the damping properties of fiber-reinforced composites. A numerical and experimental study was made to predict and understand the benefits of such method and characterize any inherent effects on modal loss factor and respective structural natural frequencies regarding the use of cork. The excellent energy absorption properties of cork under static and dynamic loading conditions, its lightness, near-impermeability and lower thermal conductivity, are the base of a recent and crescent interest in aeronautical, railroad and automobile applications for cork based materials. These intrinsic characteristics are also the main reasons for considering it as viscoelastic layer applicable in passive damping treatments with a great potential for vibration control in future aerospace applications. As far as the numerical study concerns, a finite element model (FEM) was developed to analyze the main dynamic properties of the composite structure samples, for example, the modal frequencies and respective loss factors, and compare it with the experimental results, allowing to assess the accuracy of numerical data. Distinct design variables were considered to determine their influence in the loss factor variation, namely: damping layer thickness and its relative position within the laminate, number of viscoelastic layers and effect of different layup stacking sequences. Results are encouraging about the possible use of cork based composites as a viable passive solution to improve the damping properties of high performance composites, giving rise to an increase of the loss factor as well as a change of the natural frequencies of the structure according to the design requirements for particular applications.
id RCAP_837fe3938c8a411aa0a3c32cf0365c0e
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/2016
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effects of design parameters on damping of composite materials for aeronautical applicationsIndústria aeronáuticaMateriais viscoelásticosMateriais compositosCortiçaMany engineering projects have shown a great concern with the dynamic response of generalized mechanical systems where a set of rigorous demands are placed on the design of structures in sectors such as the aerospace or the automobile industries. Aerospace materials, for example, in most cases have been developed for a specific purpose, like some particular metal alloys and composites. It is their operation requirements that influence the optimization of certain intrinsic mechanical or physical properties. The dynamic behaviour of a structure can be refined by anticipating any performance-related problem during the design process, where vibration and others parameters can be measured and optimized for the desired applications. It is often desirable to be able to predict accurately the dynamic response of a structure under certain excitation conditions. Given that, it is necessary to understand how its mass, stiffness or damping properties could be modified to obtain a desired response and vibration control, taking into account structural margin of safety and life-time limits under service. Thus, the damping of such structures, which is associated to the energy dissipation capacity, is a key aspect regarding the fatigue endurance and noise/vibration control as it controls the amplitude of resonant vibration response. Envisaging to create a cheaper, direct and maintenance-free alternative to active damping systems, passive methods are a straightforward solution for certain industrial demands. In fact, active damping systems typically imply more structure weight, considerable energy consumption, reliability issues and limited strain/force response, which are undesired features in general technological applications, especially in the aerospace sector. To achieve high damping properties discarding the use of an active system, the use of some isolation techniques, the inclusion of high damping materials or even the need for physical structural modifications are often necessary in the standpoint of a new component’s development for passive control applications. As an example, in most recent investigations, co-curing/embedded viscoelastic damping constituents in composites has been a successful way to increase the damping capacity. In the context of the present work, a passive damping treatment method based on cork utilization as viscoelastic material has been used to improve the damping properties of fiber-reinforced composites. A numerical and experimental study was made to predict and understand the benefits of such method and characterize any inherent effects on modal loss factor and respective structural natural frequencies regarding the use of cork. The excellent energy absorption properties of cork under static and dynamic loading conditions, its lightness, near-impermeability and lower thermal conductivity, are the base of a recent and crescent interest in aeronautical, railroad and automobile applications for cork based materials. These intrinsic characteristics are also the main reasons for considering it as viscoelastic layer applicable in passive damping treatments with a great potential for vibration control in future aerospace applications. As far as the numerical study concerns, a finite element model (FEM) was developed to analyze the main dynamic properties of the composite structure samples, for example, the modal frequencies and respective loss factors, and compare it with the experimental results, allowing to assess the accuracy of numerical data. Distinct design variables were considered to determine their influence in the loss factor variation, namely: damping layer thickness and its relative position within the laminate, number of viscoelastic layers and effect of different layup stacking sequences. Results are encouraging about the possible use of cork based composites as a viable passive solution to improve the damping properties of high performance composites, giving rise to an increase of the loss factor as well as a change of the natural frequencies of the structure according to the design requirements for particular applications.A resposta dinâmica de sistemas mecânicos revelou ser de grande preocupação em vários projectos de engenharia onde existe um conjunto rigoroso de exigências ligadas ao projecto de estruturas, tal como acontece em particular na indústria aeroespacial e automóvel. Materiais aeroespaciais, por exemplo, foram em muitos dos casos desenvolvidos tendo em conta propósitos específicos, tais como algumas ligas metálicas e alguns compósitos. São os requisitos de operação que influenciaram a optimização de certas propriedades mecânicas ou físicas desses materiais. O comportamento dinâmico de uma estrutura pode ser refinado durante o processo de projecto antecipando qualquer problema relacionado com o respectivo desempenho, onde vibrações e outros parâmetros podem ser medidos e posteriormente optimizados tendo em conta as aplicações desejadas. É preferível ter capacidade para prever com precisão a resposta dinâmica de uma estrutura exposta a determinadas condições de vibração. Posto isto, é necessário entender como é que a respectiva massa, rigidez ou as propriedades de amortecimento podem ser modificadas de forma a obter um controlo desejado de comportamento e vibração, tendo em conta as margens de segurança e limites de vida útil estruturais durante a sua operação. Assim, o amortecimento de tais estruturas, que está associado com a capacidade de dissipação de energia, é um aspecto chave relativamente à resistência à fadiga e no controlo de ruido/vibração traduzindo-se na forma como é controlada a amplitude de resposta em vibrações de ressonância. Pretendendo criar uma alternativa ao controlo de vibrações activo mais barata e com pouca necessidade de manutenção, os métodos passivos apresentam-se como uma solução directa a algumas necessidades da indústria. De facto, a aplicação de sistemas activos tipicamente implica mais peso estrutural, um considerável consumo de energia, problemas de reabilitação e uma resposta deformação/tensão limitada, as quais são características indesejadas para as aplicações tecnológicas gerais, especialmente para o sector aeroespacial. Para conseguir melhores propriedades de amortecimento descartando o uso de um sistema activo, o uso de algumas técnicas de isolamento, a inclusão de materiais de alto amortecimento e até a necessidade de modificações físicas e estruturais são frequentemente necessárias no ponto de vista de o desenvolvimento de um novo componente para aplicações de controlo passivo. Como exemplo, investigações recentes apresentam certos compósitos pós-curados com camadas viscoelásticas embebidas como uma forma bem sucedida de aumentar as capacidades de amortecimento. No contexto do trabalho presente, um método de tratamento de amortecimento passivo baseado na utilização da cortiça como um material viscoelástico foi utilizado para melhorar as propriedades de amortecimento de compósitos com fibras de reforço. Foi então elaborado um estudo numérico e experimental para prever e entender os benefícios de tal método caracterizando qualquer efeito inerente no factor de perda e nas respectivas frequências naturais estruturais. As excelentes propriedades de absorção de energia por parte da cortiça sobre condições de carregamentos estáticos e dinâmicos, a sua baixa densidade volumétrica, quase impermeabilidade e baixa condutividade térmica, são a base de um recente e crescente interesse da sua aplicação precisamente no sector aeronáutico, ferroviário e automóvel. Em relação ao estudo numérico, um modelo de elementos fintos (MEF) foi desenvolvido em software para analisar as principais propriedades dinâmicas de provetes feitos em compósito, como por exemplo as frequências modais e respectivo factor de perda, comparando-as posteriormente com os resultados experimentais permitindo então classificar a precisão dos dados numéricos. Distintas variáveis de projecto foram consideradas para determinar a sua influência na variação do factor de perda, nomeadamente: a espessura da camada viscoelástica e a sua posição relativa no laminado, o número de camadas viscoelásticas e o efeito das diferentes sequências de empilhamento. Os resultados são optimistas em relação à possibilidade do uso da cortiça em compósitos como um método passivo viável tendo em conta o aumento do factor de perda bem como na modificação das frequências naturais da estrutura de acordo com os requisitos de projecto de cada aplicação.Universidade da Beira InteriorSilva, José Miguel Almeida daGamboa, Pedro VieirauBibliorumLopes, João Pedro dos Santos2014-07-10T09:12:19Z2013-062013-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/2016enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:37:49Zoai:ubibliorum.ubi.pt:10400.6/2016Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:43:44.764344Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effects of design parameters on damping of composite materials for aeronautical applications
title Effects of design parameters on damping of composite materials for aeronautical applications
spellingShingle Effects of design parameters on damping of composite materials for aeronautical applications
Lopes, João Pedro dos Santos
Indústria aeronáutica
Materiais viscoelásticos
Materiais compositos
Cortiça
title_short Effects of design parameters on damping of composite materials for aeronautical applications
title_full Effects of design parameters on damping of composite materials for aeronautical applications
title_fullStr Effects of design parameters on damping of composite materials for aeronautical applications
title_full_unstemmed Effects of design parameters on damping of composite materials for aeronautical applications
title_sort Effects of design parameters on damping of composite materials for aeronautical applications
author Lopes, João Pedro dos Santos
author_facet Lopes, João Pedro dos Santos
author_role author
dc.contributor.none.fl_str_mv Silva, José Miguel Almeida da
Gamboa, Pedro Vieira
uBibliorum
dc.contributor.author.fl_str_mv Lopes, João Pedro dos Santos
dc.subject.por.fl_str_mv Indústria aeronáutica
Materiais viscoelásticos
Materiais compositos
Cortiça
topic Indústria aeronáutica
Materiais viscoelásticos
Materiais compositos
Cortiça
description Many engineering projects have shown a great concern with the dynamic response of generalized mechanical systems where a set of rigorous demands are placed on the design of structures in sectors such as the aerospace or the automobile industries. Aerospace materials, for example, in most cases have been developed for a specific purpose, like some particular metal alloys and composites. It is their operation requirements that influence the optimization of certain intrinsic mechanical or physical properties. The dynamic behaviour of a structure can be refined by anticipating any performance-related problem during the design process, where vibration and others parameters can be measured and optimized for the desired applications. It is often desirable to be able to predict accurately the dynamic response of a structure under certain excitation conditions. Given that, it is necessary to understand how its mass, stiffness or damping properties could be modified to obtain a desired response and vibration control, taking into account structural margin of safety and life-time limits under service. Thus, the damping of such structures, which is associated to the energy dissipation capacity, is a key aspect regarding the fatigue endurance and noise/vibration control as it controls the amplitude of resonant vibration response. Envisaging to create a cheaper, direct and maintenance-free alternative to active damping systems, passive methods are a straightforward solution for certain industrial demands. In fact, active damping systems typically imply more structure weight, considerable energy consumption, reliability issues and limited strain/force response, which are undesired features in general technological applications, especially in the aerospace sector. To achieve high damping properties discarding the use of an active system, the use of some isolation techniques, the inclusion of high damping materials or even the need for physical structural modifications are often necessary in the standpoint of a new component’s development for passive control applications. As an example, in most recent investigations, co-curing/embedded viscoelastic damping constituents in composites has been a successful way to increase the damping capacity. In the context of the present work, a passive damping treatment method based on cork utilization as viscoelastic material has been used to improve the damping properties of fiber-reinforced composites. A numerical and experimental study was made to predict and understand the benefits of such method and characterize any inherent effects on modal loss factor and respective structural natural frequencies regarding the use of cork. The excellent energy absorption properties of cork under static and dynamic loading conditions, its lightness, near-impermeability and lower thermal conductivity, are the base of a recent and crescent interest in aeronautical, railroad and automobile applications for cork based materials. These intrinsic characteristics are also the main reasons for considering it as viscoelastic layer applicable in passive damping treatments with a great potential for vibration control in future aerospace applications. As far as the numerical study concerns, a finite element model (FEM) was developed to analyze the main dynamic properties of the composite structure samples, for example, the modal frequencies and respective loss factors, and compare it with the experimental results, allowing to assess the accuracy of numerical data. Distinct design variables were considered to determine their influence in the loss factor variation, namely: damping layer thickness and its relative position within the laminate, number of viscoelastic layers and effect of different layup stacking sequences. Results are encouraging about the possible use of cork based composites as a viable passive solution to improve the damping properties of high performance composites, giving rise to an increase of the loss factor as well as a change of the natural frequencies of the structure according to the design requirements for particular applications.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
2013-06-01T00:00:00Z
2014-07-10T09:12:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/2016
url http://hdl.handle.net/10400.6/2016
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade da Beira Interior
publisher.none.fl_str_mv Universidade da Beira Interior
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136336188276736