Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/122034 |
Resumo: | Development of a system capable of obstacle detection and classification of various types that may be subject of collisions and result in damages to the ship or even its own total loss. The system is also capable of detection the horizon line, to estimate the relative distance of the detected objects to the vehicle current position. This is achieved throught Deep Learning techniques, namely by the use of Convolutional Neural Networks. |
id |
RCAP_83ad8a1d227a9d2dc3737ec609f2f18c |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/122034 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine LearningEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringDevelopment of a system capable of obstacle detection and classification of various types that may be subject of collisions and result in damages to the ship or even its own total loss. The system is also capable of detection the horizon line, to estimate the relative distance of the detected objects to the vehicle current position. This is achieved throught Deep Learning techniques, namely by the use of Convolutional Neural Networks.2019-07-182019-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/122034TID:202389910engAntónio Pedro Rodrigues Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:53:25Zoai:repositorio-aberto.up.pt:10216/122034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:34:39.107518Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
title |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
spellingShingle |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning António Pedro Rodrigues Pereira Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
title_full |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
title_fullStr |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
title_full_unstemmed |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
title_sort |
Detection and Classification of Obstacles for Autonomous Vessels Using Machine Learning |
author |
António Pedro Rodrigues Pereira |
author_facet |
António Pedro Rodrigues Pereira |
author_role |
author |
dc.contributor.author.fl_str_mv |
António Pedro Rodrigues Pereira |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
Development of a system capable of obstacle detection and classification of various types that may be subject of collisions and result in damages to the ship or even its own total loss. The system is also capable of detection the horizon line, to estimate the relative distance of the detected objects to the vehicle current position. This is achieved throught Deep Learning techniques, namely by the use of Convolutional Neural Networks. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-18 2019-07-18T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/122034 TID:202389910 |
url |
https://hdl.handle.net/10216/122034 |
identifier_str_mv |
TID:202389910 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136255325241344 |