A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/82543 |
Resumo: | The paper studies discrete structural properties of polynomials that play an important role in the theory of spherical harmonics in any dimensions. These polynomials have their origin in the research on problems of harmonic analysis by means of generalized holomorphic (monogenic) functions of hypercomplex analysis. The Sturm-Liouville equation that occurs in this context supplements the knowledge about generalized Vietoris number sequences Vn, first encountered as a special sequence (corresponding to n=2) by Vietoris in connection with positivity of trigonometric sums. Using methods of the calculus of holonomic differential equations, we obtain a general recurrence relation for Vn, and we derive an exponential generating function of Vn expressed by Kummer's confluent hypergeometric function. |
id |
RCAP_846de90c358824f65e3a955fc82597c4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/82543 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysisClifford algebraHypercomplex analysisSturm-Liouville equationVietoris' numbersCiências Naturais::MatemáticasScience & TechnologyThe paper studies discrete structural properties of polynomials that play an important role in the theory of spherical harmonics in any dimensions. These polynomials have their origin in the research on problems of harmonic analysis by means of generalized holomorphic (monogenic) functions of hypercomplex analysis. The Sturm-Liouville equation that occurs in this context supplements the knowledge about generalized Vietoris number sequences Vn, first encountered as a special sequence (corresponding to n=2) by Vietoris in connection with positivity of trigonometric sums. Using methods of the calculus of holonomic differential equations, we obtain a general recurrence relation for Vn, and we derive an exponential generating function of Vn expressed by Kummer's confluent hypergeometric function.This work was supported by Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho—and through the CIDMA-Center of Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (“FCT - Fundação para a Ciência e Tecnologia”), within projects UIDB/00013/2020, UIDP/00013/2020, UIDB/04106/2020 , and UIDP/04106/2020.WileyUniversidade do MinhoCação, IsabelFalcão, M. I.Malonek, Helmuth R.Tomaz, Graça2021-08-092021-08-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/82543engCaçao, I, Falcão, M I, Malonek, H R, Tomaz, G. A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis. Math Meth Appl Sci. 2021; 1- 26. https://doi.org/10.1002/mma.76840170-42141099-147610.1002/mma.7684https://onlinelibrary.wiley.com/doi/10.1002/mma.7684info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:20:06Zoai:repositorium.sdum.uminho.pt:1822/82543Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:20:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
title |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
spellingShingle |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis Cação, Isabel Clifford algebra Hypercomplex analysis Sturm-Liouville equation Vietoris' numbers Ciências Naturais::Matemáticas Science & Technology |
title_short |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
title_full |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
title_fullStr |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
title_full_unstemmed |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
title_sort |
A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis |
author |
Cação, Isabel |
author_facet |
Cação, Isabel Falcão, M. I. Malonek, Helmuth R. Tomaz, Graça |
author_role |
author |
author2 |
Falcão, M. I. Malonek, Helmuth R. Tomaz, Graça |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cação, Isabel Falcão, M. I. Malonek, Helmuth R. Tomaz, Graça |
dc.subject.por.fl_str_mv |
Clifford algebra Hypercomplex analysis Sturm-Liouville equation Vietoris' numbers Ciências Naturais::Matemáticas Science & Technology |
topic |
Clifford algebra Hypercomplex analysis Sturm-Liouville equation Vietoris' numbers Ciências Naturais::Matemáticas Science & Technology |
description |
The paper studies discrete structural properties of polynomials that play an important role in the theory of spherical harmonics in any dimensions. These polynomials have their origin in the research on problems of harmonic analysis by means of generalized holomorphic (monogenic) functions of hypercomplex analysis. The Sturm-Liouville equation that occurs in this context supplements the knowledge about generalized Vietoris number sequences Vn, first encountered as a special sequence (corresponding to n=2) by Vietoris in connection with positivity of trigonometric sums. Using methods of the calculus of holonomic differential equations, we obtain a general recurrence relation for Vn, and we derive an exponential generating function of Vn expressed by Kummer's confluent hypergeometric function. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-09 2021-08-09T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/82543 |
url |
https://hdl.handle.net/1822/82543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Caçao, I, Falcão, M I, Malonek, H R, Tomaz, G. A Sturm-Liouville equation on the crossroads of continuous and discrete hypercomplex analysis. Math Meth Appl Sci. 2021; 1- 26. https://doi.org/10.1002/mma.7684 0170-4214 1099-1476 10.1002/mma.7684 https://onlinelibrary.wiley.com/doi/10.1002/mma.7684 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544936178843648 |