Insertion and extension results for pointfree complete regularity

Detalhes bibliográficos
Autor(a) principal: Gutiérrez García, Javier
Data de Publicação: 2013
Outros Autores: Picado, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
Resumo: There are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.
id RCAP_84c8a99650cdabb08af0eaa4a53e28e4
oai_identifier_str oai:estudogeral.uc.pt:10316/89466
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Insertion and extension results for pointfree complete regularityFrame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embeddingThere are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89466http://hdl.handle.net/10316/89466https://doi.org/10.36045/bbms/1382448188enghttps://projecteuclid.org/euclid.bbms/1382448188Gutiérrez García, JavierPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:31:53Zoai:estudogeral.uc.pt:10316/89466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:46.154126Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Insertion and extension results for pointfree complete regularity
title Insertion and extension results for pointfree complete regularity
spellingShingle Insertion and extension results for pointfree complete regularity
Gutiérrez García, Javier
Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
title_short Insertion and extension results for pointfree complete regularity
title_full Insertion and extension results for pointfree complete regularity
title_fullStr Insertion and extension results for pointfree complete regularity
title_full_unstemmed Insertion and extension results for pointfree complete regularity
title_sort Insertion and extension results for pointfree complete regularity
author Gutiérrez García, Javier
author_facet Gutiérrez García, Javier
Picado, Jorge
author_role author
author2 Picado, Jorge
author2_role author
dc.contributor.author.fl_str_mv Gutiérrez García, Javier
Picado, Jorge
dc.subject.por.fl_str_mv Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
topic Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
description There are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89466
http://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
url http://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://projecteuclid.org/euclid.bbms/1382448188
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992902983680