Exciting dynamical behavior in a network of two coupled rings of Chen oscillators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/5304 |
Resumo: | We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states. |
id |
RCAP_84d4381f11bad808480357526cf5048c |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/5304 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillatorsChaosQuasiperiodic statesSymmetryHopf bifurcationPeriod-doubling bifurcationHalving-period bifurcationWe study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.SpringerRepositório Científico do Instituto Politécnico do PortoPinto, Carla M.A.2015-01-06T14:21:55Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5304eng0924-090X10.1007/s11071-014-1512-0info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:45:24Zoai:recipp.ipp.pt:10400.22/5304Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:26:01.012848Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
title |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
spellingShingle |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators Pinto, Carla M.A. Chaos Quasiperiodic states Symmetry Hopf bifurcation Period-doubling bifurcation Halving-period bifurcation |
title_short |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
title_full |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
title_fullStr |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
title_full_unstemmed |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
title_sort |
Exciting dynamical behavior in a network of two coupled rings of Chen oscillators |
author |
Pinto, Carla M.A. |
author_facet |
Pinto, Carla M.A. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Pinto, Carla M.A. |
dc.subject.por.fl_str_mv |
Chaos Quasiperiodic states Symmetry Hopf bifurcation Period-doubling bifurcation Halving-period bifurcation |
topic |
Chaos Quasiperiodic states Symmetry Hopf bifurcation Period-doubling bifurcation Halving-period bifurcation |
description |
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z 2015-01-06T14:21:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/5304 |
url |
http://hdl.handle.net/10400.22/5304 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0924-090X 10.1007/s11071-014-1512-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131354699399168 |