A robust model for the lot-sizing problem with uncertain demands
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39948 |
Resumo: | We consider a lot-sizing problem with set-ups where the demands are uncertain, and propose a novel approach to evaluate the inventory costs. An interval uncertainty is assumed for the demands. Between two consecutive production periods, the adversary chooses to set the demand either to its higher value or to its lower value in order to maximize the inventory (holding or backlog) costs. A mixed-integer model is devised and a column-and-row generation algorithm is proposed. Computational tests based on random generated instances are conducted to evaluate the model, the decomposition algorithm, and compare the structure of the solutions from the robust model with those from the deterministic model. |
id |
RCAP_8542e5b9f3976f25831d6d703c680423 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39948 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A robust model for the lot-sizing problem with uncertain demandsLot-sizingSet-upsRobust optimizationColumn-and-row generationWe consider a lot-sizing problem with set-ups where the demands are uncertain, and propose a novel approach to evaluate the inventory costs. An interval uncertainty is assumed for the demands. Between two consecutive production periods, the adversary chooses to set the demand either to its higher value or to its lower value in order to maximize the inventory (holding or backlog) costs. A mixed-integer model is devised and a column-and-row generation algorithm is proposed. Computational tests based on random generated instances are conducted to evaluate the model, the decomposition algorithm, and compare the structure of the solutions from the robust model with those from the deterministic model.Springer2024-01-04T15:26:09Z2023-07-01T00:00:00Z2023-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39948eng1862-447210.1007/s11590-023-01994-xAgra, Agostinhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:50:40Zoai:ria.ua.pt:10773/39948Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:50:40Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A robust model for the lot-sizing problem with uncertain demands |
title |
A robust model for the lot-sizing problem with uncertain demands |
spellingShingle |
A robust model for the lot-sizing problem with uncertain demands Agra, Agostinho Lot-sizing Set-ups Robust optimization Column-and-row generation |
title_short |
A robust model for the lot-sizing problem with uncertain demands |
title_full |
A robust model for the lot-sizing problem with uncertain demands |
title_fullStr |
A robust model for the lot-sizing problem with uncertain demands |
title_full_unstemmed |
A robust model for the lot-sizing problem with uncertain demands |
title_sort |
A robust model for the lot-sizing problem with uncertain demands |
author |
Agra, Agostinho |
author_facet |
Agra, Agostinho |
author_role |
author |
dc.contributor.author.fl_str_mv |
Agra, Agostinho |
dc.subject.por.fl_str_mv |
Lot-sizing Set-ups Robust optimization Column-and-row generation |
topic |
Lot-sizing Set-ups Robust optimization Column-and-row generation |
description |
We consider a lot-sizing problem with set-ups where the demands are uncertain, and propose a novel approach to evaluate the inventory costs. An interval uncertainty is assumed for the demands. Between two consecutive production periods, the adversary chooses to set the demand either to its higher value or to its lower value in order to maximize the inventory (holding or backlog) costs. A mixed-integer model is devised and a column-and-row generation algorithm is proposed. Computational tests based on random generated instances are conducted to evaluate the model, the decomposition algorithm, and compare the structure of the solutions from the robust model with those from the deterministic model. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-01T00:00:00Z 2023-07 2024-01-04T15:26:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39948 |
url |
http://hdl.handle.net/10773/39948 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1862-4472 10.1007/s11590-023-01994-x |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543881512714240 |