Autonomous Identification and Tracking of Thermoclines

Detalhes bibliográficos
Autor(a) principal: Hugo Miguel Gomes Antunes
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/121962
Resumo: All data acquired from oceanic water features is hard and crucial work. It's hard due to the difficulty to obtain the same data given the unfavourable conditions.It requires, therefore, equipment that are reliable in the measurements of the desired characteristics and robust equipment, that is to say, equipment that are capable to withstand unfavorable and variable conditions in spatial and temporal terms. Due to these same spatial and temporal changes, the traditional methods do not prove to be the most adequate, because these methods do not have sufficient capacity to sample measurements of the dynamic characteristics of oceanographic processes.Thus, to obtain such measurements the use of the autonomous robotic systems proves to be important. With these systems, it is ensured a faster, more efficient and systematic sampling and is not subject to human error. The data acquisition is then a crucial work to understand how oceanographic process happens and varies in time and space. This work proposes an implementation of an algorithm to perform the tracking of the thermocline, from the stratification model of the oceanic water.This model is a parametric model. This work will also take into account the capacity to perform measurements with a sampling capable of adapting the depth control of the underwater vehicle.The stratification of the oceanic water happens when exists different features between different layers. One of these layers is the thermocline. At this layer, the water temperature decreases rapidly with increasing depth. The characterization of the thermocline is so important to marine biology, given the high concentration of phytoplankton in this level, as for acoustic communications equipments or military services, given the special characteristics of speed sound in this level.The model of this stratification will be used to aid in the thermocline's tracking process. This model will serve as a basis for the algorithm to adapt the control in order to carry out the tracking with the greatest success, in real time. This algorithm will focus on the variations in the vertical temperature gradient.The algorithm responsible detect and track of the thermocline will be run on a profiler. The profiler is a vehicle that moves along the vertical axis. However, when subject to tides, the natural process in aquatic environments drifts along the horizontal axis. A set of sensors capable of measuring the water temperature and the depth at which the vehicle is below water shall be placed in this vehicle. These sensors will be important to calculate the vertical gradient.
id RCAP_85868a8eb15b9c46b21b632f1c697969
oai_identifier_str oai:repositorio-aberto.up.pt:10216/121962
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Autonomous Identification and Tracking of ThermoclinesEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringAll data acquired from oceanic water features is hard and crucial work. It's hard due to the difficulty to obtain the same data given the unfavourable conditions.It requires, therefore, equipment that are reliable in the measurements of the desired characteristics and robust equipment, that is to say, equipment that are capable to withstand unfavorable and variable conditions in spatial and temporal terms. Due to these same spatial and temporal changes, the traditional methods do not prove to be the most adequate, because these methods do not have sufficient capacity to sample measurements of the dynamic characteristics of oceanographic processes.Thus, to obtain such measurements the use of the autonomous robotic systems proves to be important. With these systems, it is ensured a faster, more efficient and systematic sampling and is not subject to human error. The data acquisition is then a crucial work to understand how oceanographic process happens and varies in time and space. This work proposes an implementation of an algorithm to perform the tracking of the thermocline, from the stratification model of the oceanic water.This model is a parametric model. This work will also take into account the capacity to perform measurements with a sampling capable of adapting the depth control of the underwater vehicle.The stratification of the oceanic water happens when exists different features between different layers. One of these layers is the thermocline. At this layer, the water temperature decreases rapidly with increasing depth. The characterization of the thermocline is so important to marine biology, given the high concentration of phytoplankton in this level, as for acoustic communications equipments or military services, given the special characteristics of speed sound in this level.The model of this stratification will be used to aid in the thermocline's tracking process. This model will serve as a basis for the algorithm to adapt the control in order to carry out the tracking with the greatest success, in real time. This algorithm will focus on the variations in the vertical temperature gradient.The algorithm responsible detect and track of the thermocline will be run on a profiler. The profiler is a vehicle that moves along the vertical axis. However, when subject to tides, the natural process in aquatic environments drifts along the horizontal axis. A set of sensors capable of measuring the water temperature and the depth at which the vehicle is below water shall be placed in this vehicle. These sensors will be important to calculate the vertical gradient.2019-07-052019-07-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/121962TID:202392686engHugo Miguel Gomes Antunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:14:10Zoai:repositorio-aberto.up.pt:10216/121962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:18:38.530073Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Autonomous Identification and Tracking of Thermoclines
title Autonomous Identification and Tracking of Thermoclines
spellingShingle Autonomous Identification and Tracking of Thermoclines
Hugo Miguel Gomes Antunes
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Autonomous Identification and Tracking of Thermoclines
title_full Autonomous Identification and Tracking of Thermoclines
title_fullStr Autonomous Identification and Tracking of Thermoclines
title_full_unstemmed Autonomous Identification and Tracking of Thermoclines
title_sort Autonomous Identification and Tracking of Thermoclines
author Hugo Miguel Gomes Antunes
author_facet Hugo Miguel Gomes Antunes
author_role author
dc.contributor.author.fl_str_mv Hugo Miguel Gomes Antunes
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description All data acquired from oceanic water features is hard and crucial work. It's hard due to the difficulty to obtain the same data given the unfavourable conditions.It requires, therefore, equipment that are reliable in the measurements of the desired characteristics and robust equipment, that is to say, equipment that are capable to withstand unfavorable and variable conditions in spatial and temporal terms. Due to these same spatial and temporal changes, the traditional methods do not prove to be the most adequate, because these methods do not have sufficient capacity to sample measurements of the dynamic characteristics of oceanographic processes.Thus, to obtain such measurements the use of the autonomous robotic systems proves to be important. With these systems, it is ensured a faster, more efficient and systematic sampling and is not subject to human error. The data acquisition is then a crucial work to understand how oceanographic process happens and varies in time and space. This work proposes an implementation of an algorithm to perform the tracking of the thermocline, from the stratification model of the oceanic water.This model is a parametric model. This work will also take into account the capacity to perform measurements with a sampling capable of adapting the depth control of the underwater vehicle.The stratification of the oceanic water happens when exists different features between different layers. One of these layers is the thermocline. At this layer, the water temperature decreases rapidly with increasing depth. The characterization of the thermocline is so important to marine biology, given the high concentration of phytoplankton in this level, as for acoustic communications equipments or military services, given the special characteristics of speed sound in this level.The model of this stratification will be used to aid in the thermocline's tracking process. This model will serve as a basis for the algorithm to adapt the control in order to carry out the tracking with the greatest success, in real time. This algorithm will focus on the variations in the vertical temperature gradient.The algorithm responsible detect and track of the thermocline will be run on a profiler. The profiler is a vehicle that moves along the vertical axis. However, when subject to tides, the natural process in aquatic environments drifts along the horizontal axis. A set of sensors capable of measuring the water temperature and the depth at which the vehicle is below water shall be placed in this vehicle. These sensors will be important to calculate the vertical gradient.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-05
2019-07-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/121962
TID:202392686
url https://hdl.handle.net/10216/121962
identifier_str_mv TID:202392686
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136104926937088