Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers

Detalhes bibliográficos
Autor(a) principal: Silva, Marcionilo
Data de Publicação: 2021
Outros Autores: Ramos, Ana S., Simões, Sónia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/105236
https://doi.org/10.3390/met11111728
Resumo: This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 m) and commercial titanium foils (5 m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 C for 60 min and 1000 C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 14 MPa for the joint processed without interlayer and 49 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.
id RCAP_85a596178a6465fa86981f214047c615
oai_identifier_str oai:estudogeral.uc.pt:10316/105236
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayersdiffusion bondingthin filmtitaniumAl2O3sputteringThis work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 m) and commercial titanium foils (5 m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 C for 60 min and 1000 C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 14 MPa for the joint processed without interlayer and 49 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.MDPI2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/105236http://hdl.handle.net/10316/105236https://doi.org/10.3390/met11111728eng2075-4701Silva, MarcioniloRamos, Ana S.Simões, Sóniainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-02-10T09:38:05Zoai:estudogeral.uc.pt:10316/105236Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:21:50.200615Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
title Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
spellingShingle Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
Silva, Marcionilo
diffusion bonding
thin film
titanium
Al2O3
sputtering
title_short Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
title_full Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
title_fullStr Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
title_full_unstemmed Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
title_sort Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
author Silva, Marcionilo
author_facet Silva, Marcionilo
Ramos, Ana S.
Simões, Sónia
author_role author
author2 Ramos, Ana S.
Simões, Sónia
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Marcionilo
Ramos, Ana S.
Simões, Sónia
dc.subject.por.fl_str_mv diffusion bonding
thin film
titanium
Al2O3
sputtering
topic diffusion bonding
thin film
titanium
Al2O3
sputtering
description This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 m) and commercial titanium foils (5 m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 C for 60 min and 1000 C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 14 MPa for the joint processed without interlayer and 49 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/105236
http://hdl.handle.net/10316/105236
https://doi.org/10.3390/met11111728
url http://hdl.handle.net/10316/105236
https://doi.org/10.3390/met11111728
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-4701
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134108818866176