Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/106722 https://doi.org/10.47743/saeb-2020-0024 |
Resumo: | This study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques. |
id |
RCAP_866689de61f73b34f52685580f5c9907 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/106722 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futureselectricity futures;machine learning;Nord Pool;risk premium; tradingThis study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques.Alexandru Ioan Cuza - University of Iasi2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106722http://hdl.handle.net/10316/106722https://doi.org/10.47743/saeb-2020-0024eng2501196025013165Sebastião, HelderGodinho, PedroWestgaard, Sjurinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-14T10:25:57Zoai:estudogeral.uc.pt:10316/106722Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:06.405371Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
title |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
spellingShingle |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures Sebastião, Helder electricity futures; machine learning; Nord Pool; risk premium; trading |
title_short |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
title_full |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
title_fullStr |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
title_full_unstemmed |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
title_sort |
Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures |
author |
Sebastião, Helder |
author_facet |
Sebastião, Helder Godinho, Pedro Westgaard, Sjur |
author_role |
author |
author2 |
Godinho, Pedro Westgaard, Sjur |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sebastião, Helder Godinho, Pedro Westgaard, Sjur |
dc.subject.por.fl_str_mv |
electricity futures; machine learning; Nord Pool; risk premium; trading |
topic |
electricity futures; machine learning; Nord Pool; risk premium; trading |
description |
This study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/106722 http://hdl.handle.net/10316/106722 https://doi.org/10.47743/saeb-2020-0024 |
url |
http://hdl.handle.net/10316/106722 https://doi.org/10.47743/saeb-2020-0024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
25011960 25013165 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Alexandru Ioan Cuza - University of Iasi |
publisher.none.fl_str_mv |
Alexandru Ioan Cuza - University of Iasi |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134118852689920 |