Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures

Detalhes bibliográficos
Autor(a) principal: Sebastião, Helder
Data de Publicação: 2020
Outros Autores: Godinho, Pedro, Westgaard, Sjur
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/106722
https://doi.org/10.47743/saeb-2020-0024
Resumo: This study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques.
id RCAP_866689de61f73b34f52685580f5c9907
oai_identifier_str oai:estudogeral.uc.pt:10316/106722
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futureselectricity futures;machine learning;Nord Pool;risk premium; tradingThis study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques.Alexandru Ioan Cuza - University of Iasi2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106722http://hdl.handle.net/10316/106722https://doi.org/10.47743/saeb-2020-0024eng2501196025013165Sebastião, HelderGodinho, PedroWestgaard, Sjurinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-14T10:25:57Zoai:estudogeral.uc.pt:10316/106722Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:06.405371Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
title Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
spellingShingle Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
Sebastião, Helder
electricity futures;
machine learning;
Nord Pool;
risk premium; trading
title_short Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
title_full Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
title_fullStr Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
title_full_unstemmed Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
title_sort Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures
author Sebastião, Helder
author_facet Sebastião, Helder
Godinho, Pedro
Westgaard, Sjur
author_role author
author2 Godinho, Pedro
Westgaard, Sjur
author2_role author
author
dc.contributor.author.fl_str_mv Sebastião, Helder
Godinho, Pedro
Westgaard, Sjur
dc.subject.por.fl_str_mv electricity futures;
machine learning;
Nord Pool;
risk premium; trading
topic electricity futures;
machine learning;
Nord Pool;
risk premium; trading
description This study investigates the use of several trading strategies, based on Machine Learning methods, to profit on the risk premium of the Nordic electricity base-load week futures. The information set is only composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the Support Vector Machine is the best method, but, most importantly, they highlight that all individual models are valuable, in the sense that their combination provides a robust trading procedure, generating an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The results are robust to the different data partitions, and there is no evidence that the profitability of the trading strategies has decreased in recent years. We claim that this market allows for profitable speculation, namely by using combinations of non-linear signal extraction techniques.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/106722
http://hdl.handle.net/10316/106722
https://doi.org/10.47743/saeb-2020-0024
url http://hdl.handle.net/10316/106722
https://doi.org/10.47743/saeb-2020-0024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 25011960
25013165
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Alexandru Ioan Cuza - University of Iasi
publisher.none.fl_str_mv Alexandru Ioan Cuza - University of Iasi
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134118852689920