Conversational Aware Suggestion System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28331 |
Resumo: | Over the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics. |
id |
RCAP_86c7fa8b0590ff7c2201e91bc8605960 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28331 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Conversational Aware Suggestion SystemPervasive computingContext-awarenessInformation retrievalSuggestions systemText miningReinforcement learningOver the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics.Ao longo dos últimos anos, os sistemas pervasivos têm sido fonte de um grande desenvolvimento. Contudo, as interações humano-humano também podem tirar vantagem deste tipo de sistemas recorrendo à sua capacidade para entender o ambiente que o rodeia. Nesta dissertação, foi desenvolvido um sistema pervasivo - chamado Sistema de Sugestões Sensível ao Contexto (CLASSY) - que está consciente dos vários contextos conversacionais e que sugere documentos considerados potencialmente úteis para os utilizadores ou que, de alguma forma, poupam tempo na execução de uma tarefa específica. Foram também propostas duas aproximações diferentes - a de vizinhança, que usa similaridade semântica, baseando-se em proximidades de forma a classificar relações entre palavras; e a de Aprendizagem por Reforço, que usa feedback implícito dos utilizadores associado a cada sugestão, como fonte de conhecimento que pode ser utilizado para melhorar a performance do sistema ao longo do tempo. Os testes realizados mostraram que as aproximações acima referidas melhoraram não só o comportamento pervasivo do sistema, mas também a sua performance global. Foi, ainda, analisado um caso de estudo referente à importância de feedback em ambientes com contexto limitado, onde os resultados mostraram que o mesmo continua a ser uma importante fonte de conhecimento, independentemente das características do ambiente conversacional.2020-04-30T15:52:55Z2019-12-19T00:00:00Z2019-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28331engFerreira, Diogo Filipe Peixotoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:25:16Zoai:ria.ua.pt:10773/28331Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:25:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Conversational Aware Suggestion System |
title |
Conversational Aware Suggestion System |
spellingShingle |
Conversational Aware Suggestion System Ferreira, Diogo Filipe Peixoto Pervasive computing Context-awareness Information retrieval Suggestions system Text mining Reinforcement learning |
title_short |
Conversational Aware Suggestion System |
title_full |
Conversational Aware Suggestion System |
title_fullStr |
Conversational Aware Suggestion System |
title_full_unstemmed |
Conversational Aware Suggestion System |
title_sort |
Conversational Aware Suggestion System |
author |
Ferreira, Diogo Filipe Peixoto |
author_facet |
Ferreira, Diogo Filipe Peixoto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Diogo Filipe Peixoto |
dc.subject.por.fl_str_mv |
Pervasive computing Context-awareness Information retrieval Suggestions system Text mining Reinforcement learning |
topic |
Pervasive computing Context-awareness Information retrieval Suggestions system Text mining Reinforcement learning |
description |
Over the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-19T00:00:00Z 2019-12-19 2020-04-30T15:52:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28331 |
url |
http://hdl.handle.net/10773/28331 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543740041986048 |