Conversational Aware Suggestion System

Detalhes bibliográficos
Autor(a) principal: Ferreira, Diogo Filipe Peixoto
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28331
Resumo: Over the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics.
id RCAP_86c7fa8b0590ff7c2201e91bc8605960
oai_identifier_str oai:ria.ua.pt:10773/28331
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Conversational Aware Suggestion SystemPervasive computingContext-awarenessInformation retrievalSuggestions systemText miningReinforcement learningOver the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics.Ao longo dos últimos anos, os sistemas pervasivos têm sido fonte de um grande desenvolvimento. Contudo, as interações humano-humano também podem tirar vantagem deste tipo de sistemas recorrendo à sua capacidade para entender o ambiente que o rodeia. Nesta dissertação, foi desenvolvido um sistema pervasivo - chamado Sistema de Sugestões Sensível ao Contexto (CLASSY) - que está consciente dos vários contextos conversacionais e que sugere documentos considerados potencialmente úteis para os utilizadores ou que, de alguma forma, poupam tempo na execução de uma tarefa específica. Foram também propostas duas aproximações diferentes - a de vizinhança, que usa similaridade semântica, baseando-se em proximidades de forma a classificar relações entre palavras; e a de Aprendizagem por Reforço, que usa feedback implícito dos utilizadores associado a cada sugestão, como fonte de conhecimento que pode ser utilizado para melhorar a performance do sistema ao longo do tempo. Os testes realizados mostraram que as aproximações acima referidas melhoraram não só o comportamento pervasivo do sistema, mas também a sua performance global. Foi, ainda, analisado um caso de estudo referente à importância de feedback em ambientes com contexto limitado, onde os resultados mostraram que o mesmo continua a ser uma importante fonte de conhecimento, independentemente das características do ambiente conversacional.2020-04-30T15:52:55Z2019-12-19T00:00:00Z2019-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28331engFerreira, Diogo Filipe Peixotoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:25:16Zoai:ria.ua.pt:10773/28331Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:25:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Conversational Aware Suggestion System
title Conversational Aware Suggestion System
spellingShingle Conversational Aware Suggestion System
Ferreira, Diogo Filipe Peixoto
Pervasive computing
Context-awareness
Information retrieval
Suggestions system
Text mining
Reinforcement learning
title_short Conversational Aware Suggestion System
title_full Conversational Aware Suggestion System
title_fullStr Conversational Aware Suggestion System
title_full_unstemmed Conversational Aware Suggestion System
title_sort Conversational Aware Suggestion System
author Ferreira, Diogo Filipe Peixoto
author_facet Ferreira, Diogo Filipe Peixoto
author_role author
dc.contributor.author.fl_str_mv Ferreira, Diogo Filipe Peixoto
dc.subject.por.fl_str_mv Pervasive computing
Context-awareness
Information retrieval
Suggestions system
Text mining
Reinforcement learning
topic Pervasive computing
Context-awareness
Information retrieval
Suggestions system
Text mining
Reinforcement learning
description Over the last few years, pervasive systems have experienced some interesting development. Nevertheless, human-human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this dissertation, we have developed a pervasive system - named ConversationaL Aware Suggestion SYstem (CLASSY) - which is aware of the conversational context and suggests the users potentially useful documents or that, somehow, save time executing a specific task. We have also proposed two different approaches - the Neighborhood one, that uses semantic similarity, based on proximity data in order to classify the relationship between tokens; and the Reinforcement Learning one, that uses implicit feedback associated with each suggestion as a source of knowledge that can be used to improve the system's performance over time. The conducted tests showed that these two approaches not only enhanced the pervasive behavior of the system, but also increased its global performance. A case study regarding the importance of feedback on context-limited environments was also carried out, whose results showed that it is still a useful source of knowledge regardless the conversational environment's characteristics.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-19T00:00:00Z
2019-12-19
2020-04-30T15:52:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28331
url http://hdl.handle.net/10773/28331
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543740041986048