A mathematical model for the corneal transparency problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/100487 https://doi.org/10.1186/s13362-022-00125-y |
Resumo: | Understanding the physical basis of corneal transparency has been a subject of interest amongst physicists, basic scientists and ophthalmologists. Impairment of corneal clarity is a significant cause of visual morbidity worldwide. Thus, it is essential to understand the mechanisms behind corneal transparency and how the alterations due to corneal pathologies affect vision. We use Maxwell’s equations to model light propagation in ocular tissues and a nodal discontinuous Galerkin method combined with an explicit Runge-Kutta method to simulate light propagation in normal and pathological corneas. Our simulation results illustrate that an increase in the diameter of some fibres causes an increase in backscattering. Thus, these may represent some of the physical changes in the cornea that might result in loss of transparency and visual morbidity. |
id |
RCAP_8725aa37dc4b6dec7ad9245757c97023 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/100487 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A mathematical model for the corneal transparency problemMaxwell’s equationsDiscontinuous Galerkin methodLow-storage explicit Runge-Kutta methodCorneal transparencyLight scatteringUnderstanding the physical basis of corneal transparency has been a subject of interest amongst physicists, basic scientists and ophthalmologists. Impairment of corneal clarity is a significant cause of visual morbidity worldwide. Thus, it is essential to understand the mechanisms behind corneal transparency and how the alterations due to corneal pathologies affect vision. We use Maxwell’s equations to model light propagation in ocular tissues and a nodal discontinuous Galerkin method combined with an explicit Runge-Kutta method to simulate light propagation in normal and pathological corneas. Our simulation results illustrate that an increase in the diameter of some fibres causes an increase in backscattering. Thus, these may represent some of the physical changes in the cornea that might result in loss of transparency and visual morbidity.2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100487http://hdl.handle.net/10316/100487https://doi.org/10.1186/s13362-022-00125-yeng2190-5983Araújo, AdéritoBarbeiro, Sílvia Alexandra AlvesBernardes, Rui Manuel Dias Cortesão dos SantosMorgado, MiguelSakić, Sunčicainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-06-23T20:31:40Zoai:estudogeral.uc.pt:10316/100487Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:17:51.937507Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A mathematical model for the corneal transparency problem |
title |
A mathematical model for the corneal transparency problem |
spellingShingle |
A mathematical model for the corneal transparency problem Araújo, Adérito Maxwell’s equations Discontinuous Galerkin method Low-storage explicit Runge-Kutta method Corneal transparency Light scattering |
title_short |
A mathematical model for the corneal transparency problem |
title_full |
A mathematical model for the corneal transparency problem |
title_fullStr |
A mathematical model for the corneal transparency problem |
title_full_unstemmed |
A mathematical model for the corneal transparency problem |
title_sort |
A mathematical model for the corneal transparency problem |
author |
Araújo, Adérito |
author_facet |
Araújo, Adérito Barbeiro, Sílvia Alexandra Alves Bernardes, Rui Manuel Dias Cortesão dos Santos Morgado, Miguel Sakić, Sunčica |
author_role |
author |
author2 |
Barbeiro, Sílvia Alexandra Alves Bernardes, Rui Manuel Dias Cortesão dos Santos Morgado, Miguel Sakić, Sunčica |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Araújo, Adérito Barbeiro, Sílvia Alexandra Alves Bernardes, Rui Manuel Dias Cortesão dos Santos Morgado, Miguel Sakić, Sunčica |
dc.subject.por.fl_str_mv |
Maxwell’s equations Discontinuous Galerkin method Low-storage explicit Runge-Kutta method Corneal transparency Light scattering |
topic |
Maxwell’s equations Discontinuous Galerkin method Low-storage explicit Runge-Kutta method Corneal transparency Light scattering |
description |
Understanding the physical basis of corneal transparency has been a subject of interest amongst physicists, basic scientists and ophthalmologists. Impairment of corneal clarity is a significant cause of visual morbidity worldwide. Thus, it is essential to understand the mechanisms behind corneal transparency and how the alterations due to corneal pathologies affect vision. We use Maxwell’s equations to model light propagation in ocular tissues and a nodal discontinuous Galerkin method combined with an explicit Runge-Kutta method to simulate light propagation in normal and pathological corneas. Our simulation results illustrate that an increase in the diameter of some fibres causes an increase in backscattering. Thus, these may represent some of the physical changes in the cornea that might result in loss of transparency and visual morbidity. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/100487 http://hdl.handle.net/10316/100487 https://doi.org/10.1186/s13362-022-00125-y |
url |
http://hdl.handle.net/10316/100487 https://doi.org/10.1186/s13362-022-00125-y |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2190-5983 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134074273529856 |