HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients

Detalhes bibliográficos
Autor(a) principal: Ramoa, Augusto
Data de Publicação: 2021
Outros Autores: Condeço, Jorge, Fdez-Riverola, Florentino, Lourenço, Anália
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/68529
Resumo: This work introduces HaemoKBS, a novel Haemovigilance decision support system for adverse reactions in blood recipients. Machine learning inference and rule-based reasoning were applied to build the underlying decision support models, namely to automatically extract evidence from different types of data included in hospital notifications and incorporate a priori expert knowledge. The ultimate aim is to dynamically learn and improve the reasoning abilities of the system and thus, be able to provide educated recommendations to hospital notifiers along with understandable explanations on the acquired knowledge. Experiments over the records of the Portuguese National Haemovigilance System from the last 10 years demonstrate the practical usefulness of HaemoKBS, which will contribute to a better depiction of the adverse reactions and to flag any incomplete notification enforcing data quality.
id RCAP_879b5eb401e47cf77e670c5725ee1529
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/68529
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipientsHaemovigilanceblood recipientsadverse reactionsexpert knowledgemachine learningknowledge validityknowledge and reasoning adaptationScience & TechnologyThis work introduces HaemoKBS, a novel Haemovigilance decision support system for adverse reactions in blood recipients. Machine learning inference and rule-based reasoning were applied to build the underlying decision support models, namely to automatically extract evidence from different types of data included in hospital notifications and incorporate a priori expert knowledge. The ultimate aim is to dynamically learn and improve the reasoning abilities of the system and thus, be able to provide educated recommendations to hospital notifiers along with understandable explanations on the acquired knowledge. Experiments over the records of the Portuguese National Haemovigilance System from the last 10 years demonstrate the practical usefulness of HaemoKBS, which will contribute to a better depiction of the adverse reactions and to flag any incomplete notification enforcing data quality.SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding of ED431C2018/55-GRC Competitive Reference Group, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI01-0145-FEDER-006684).info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoRamoa, AugustoCondeço, JorgeFdez-Riverola, FlorentinoLourenço, Anália20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/68529engRamoa, Augusto; Condeço, Jorge; Fdez-Riverola, Florentino; Lourenço, Anália, HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients. Neurocomputing, 423, 756-767, 2021. DOI: 10.1016/j.neucom.2020.04.1010925-231210.1016/j.neucom.2020.04.101https://www.journals.elsevier.com/neurocomputinginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:26:12Zoai:repositorium.sdum.uminho.pt:1822/68529Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:20:33.974361Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
title HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
spellingShingle HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
Ramoa, Augusto
Haemovigilance
blood recipients
adverse reactions
expert knowledge
machine learning
knowledge validity
knowledge and reasoning adaptation
Science & Technology
title_short HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
title_full HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
title_fullStr HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
title_full_unstemmed HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
title_sort HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients
author Ramoa, Augusto
author_facet Ramoa, Augusto
Condeço, Jorge
Fdez-Riverola, Florentino
Lourenço, Anália
author_role author
author2 Condeço, Jorge
Fdez-Riverola, Florentino
Lourenço, Anália
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ramoa, Augusto
Condeço, Jorge
Fdez-Riverola, Florentino
Lourenço, Anália
dc.subject.por.fl_str_mv Haemovigilance
blood recipients
adverse reactions
expert knowledge
machine learning
knowledge validity
knowledge and reasoning adaptation
Science & Technology
topic Haemovigilance
blood recipients
adverse reactions
expert knowledge
machine learning
knowledge validity
knowledge and reasoning adaptation
Science & Technology
description This work introduces HaemoKBS, a novel Haemovigilance decision support system for adverse reactions in blood recipients. Machine learning inference and rule-based reasoning were applied to build the underlying decision support models, namely to automatically extract evidence from different types of data included in hospital notifications and incorporate a priori expert knowledge. The ultimate aim is to dynamically learn and improve the reasoning abilities of the system and thus, be able to provide educated recommendations to hospital notifiers along with understandable explanations on the acquired knowledge. Experiments over the records of the Portuguese National Haemovigilance System from the last 10 years demonstrate the practical usefulness of HaemoKBS, which will contribute to a better depiction of the adverse reactions and to flag any incomplete notification enforcing data quality.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/68529
url http://hdl.handle.net/1822/68529
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ramoa, Augusto; Condeço, Jorge; Fdez-Riverola, Florentino; Lourenço, Anália, HaemoKBS: a knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients. Neurocomputing, 423, 756-767, 2021. DOI: 10.1016/j.neucom.2020.04.101
0925-2312
10.1016/j.neucom.2020.04.101
https://www.journals.elsevier.com/neurocomputing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132669496262656