Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/100132 https://doi.org/10.3390/math10081205 |
Resumo: | In this paper, the Riemann–Hilbert problem, with a jump supported on an appropriate curve on the complex plane with a finite endpoint at the origin, is used for the study of the corresponding matrix biorthogonal polynomials associated with Laguerre type matrices of weights—which are constructed in terms of a given matrix Pearson equation. First and second order differential systems for the fundamental matrix, solution of the mentioned Riemann–Hilbert problem, are derived. An explicit and general example is presented to illustrate the theoretical results of the work. The non-Abelian extensions of a family of discrete Painlevé IV equations are discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
id |
RCAP_87b1aaeacb45e4a18ccc96f60b50441b |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/100132 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IVdiscrete integrable systemsmatrix biorthogonal polynomialsmatrix Pearson equationsnon-Abelian discrete Painlevé IV equationRiemann–Hilbert problemsIn this paper, the Riemann–Hilbert problem, with a jump supported on an appropriate curve on the complex plane with a finite endpoint at the origin, is used for the study of the corresponding matrix biorthogonal polynomials associated with Laguerre type matrices of weights—which are constructed in terms of a given matrix Pearson equation. First and second order differential systems for the fundamental matrix, solution of the mentioned Riemann–Hilbert problem, are derived. An explicit and general example is presented to illustrate the theoretical results of the work. The non-Abelian extensions of a family of discrete Painlevé IV equations are discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.MDPI2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100132http://hdl.handle.net/10316/100132https://doi.org/10.3390/math10081205eng2227-7390Branquinho, AmílcarMoreno, Ana FoulquiéFradi, AssilMañas, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-16T20:46:42Zoai:estudogeral.uc.pt:10316/100132Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:17:35.454411Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
title |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
spellingShingle |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV Branquinho, Amílcar discrete integrable systems matrix biorthogonal polynomials matrix Pearson equations non-Abelian discrete Painlevé IV equation Riemann–Hilbert problems |
title_short |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
title_full |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
title_fullStr |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
title_full_unstemmed |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
title_sort |
Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV |
author |
Branquinho, Amílcar |
author_facet |
Branquinho, Amílcar Moreno, Ana Foulquié Fradi, Assil Mañas, Manuel |
author_role |
author |
author2 |
Moreno, Ana Foulquié Fradi, Assil Mañas, Manuel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Branquinho, Amílcar Moreno, Ana Foulquié Fradi, Assil Mañas, Manuel |
dc.subject.por.fl_str_mv |
discrete integrable systems matrix biorthogonal polynomials matrix Pearson equations non-Abelian discrete Painlevé IV equation Riemann–Hilbert problems |
topic |
discrete integrable systems matrix biorthogonal polynomials matrix Pearson equations non-Abelian discrete Painlevé IV equation Riemann–Hilbert problems |
description |
In this paper, the Riemann–Hilbert problem, with a jump supported on an appropriate curve on the complex plane with a finite endpoint at the origin, is used for the study of the corresponding matrix biorthogonal polynomials associated with Laguerre type matrices of weights—which are constructed in terms of a given matrix Pearson equation. First and second order differential systems for the fundamental matrix, solution of the mentioned Riemann–Hilbert problem, are derived. An explicit and general example is presented to illustrate the theoretical results of the work. The non-Abelian extensions of a family of discrete Painlevé IV equations are discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/100132 http://hdl.handle.net/10316/100132 https://doi.org/10.3390/math10081205 |
url |
http://hdl.handle.net/10316/100132 https://doi.org/10.3390/math10081205 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-7390 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134071417208832 |