Error propagation in the numerical integration of solitary waves. The regularized long wave equation

Detalhes bibliográficos
Autor(a) principal: Araújo, A.
Data de Publicação: 2001
Outros Autores: Durán, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4652
https://doi.org/10.1016/S0168-9274(99)00148-8
Resumo: We study the error propagation of time integrators of solitary wave solutions for the regularized long wave equation, , by using a geometric interpretation of these waves as relative equilibria. We show that the error growth is linear for schemes that preserve invariant quantities of the problem and quadratic for [`]nonconservative' methods. Numerical experiments are presented.
id RCAP_87b2958980f315d442867ce160c64ce9
oai_identifier_str oai:estudogeral.uc.pt:10316/4652
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Error propagation in the numerical integration of solitary waves. The regularized long wave equationHamiltonian structureSolitary wavesRelative equilibriaConservative methodsSymmetry groupsWe study the error propagation of time integrators of solitary wave solutions for the regularized long wave equation, , by using a geometric interpretation of these waves as relative equilibria. We show that the error growth is linear for schemes that preserve invariant quantities of the problem and quadratic for [`]nonconservative' methods. Numerical experiments are presented.http://www.sciencedirect.com/science/article/B6TYD-42349TN-5/1/a33971b3c6b4c041b0fe97bfdf6bf4342001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4652http://hdl.handle.net/10316/4652https://doi.org/10.1016/S0168-9274(99)00148-8engApplied Numerical Mathematics. 36:2-3 (2001) 197-217Araújo, A.Durán, A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:46Zoai:estudogeral.uc.pt:10316/4652Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:40.870386Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Error propagation in the numerical integration of solitary waves. The regularized long wave equation
title Error propagation in the numerical integration of solitary waves. The regularized long wave equation
spellingShingle Error propagation in the numerical integration of solitary waves. The regularized long wave equation
Araújo, A.
Hamiltonian structure
Solitary waves
Relative equilibria
Conservative methods
Symmetry groups
title_short Error propagation in the numerical integration of solitary waves. The regularized long wave equation
title_full Error propagation in the numerical integration of solitary waves. The regularized long wave equation
title_fullStr Error propagation in the numerical integration of solitary waves. The regularized long wave equation
title_full_unstemmed Error propagation in the numerical integration of solitary waves. The regularized long wave equation
title_sort Error propagation in the numerical integration of solitary waves. The regularized long wave equation
author Araújo, A.
author_facet Araújo, A.
Durán, A.
author_role author
author2 Durán, A.
author2_role author
dc.contributor.author.fl_str_mv Araújo, A.
Durán, A.
dc.subject.por.fl_str_mv Hamiltonian structure
Solitary waves
Relative equilibria
Conservative methods
Symmetry groups
topic Hamiltonian structure
Solitary waves
Relative equilibria
Conservative methods
Symmetry groups
description We study the error propagation of time integrators of solitary wave solutions for the regularized long wave equation, , by using a geometric interpretation of these waves as relative equilibria. We show that the error growth is linear for schemes that preserve invariant quantities of the problem and quadratic for [`]nonconservative' methods. Numerical experiments are presented.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4652
http://hdl.handle.net/10316/4652
https://doi.org/10.1016/S0168-9274(99)00148-8
url http://hdl.handle.net/10316/4652
https://doi.org/10.1016/S0168-9274(99)00148-8
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Numerical Mathematics. 36:2-3 (2001) 197-217
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897116614656