The big four: discrete choice modelling to predict the four major Oscar categories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/32468 |
Resumo: | The present study formulates regression models that predict the four major Oscar categories (Picture, Director, Actor and Actress). A database was created, collecting publicly available information from 2005 to 2016. The approach taken was to apply discrete choice modelling. A remarkable predictive accuracy was achieved, as every single Oscar winner was correctly predicted. The study found evidence of the crucial role of directors, the predictive power of box office, gender discrepancies in the film industry and the Academy’s biases in the selection of winners related to the film genre, nominees’ body of work and the portrayal of actual events. |
id |
RCAP_87d91f7cdc4064f8c7058ec2a3d7ab9d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/32468 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The big four: discrete choice modelling to predict the four major Oscar categoriesPredictionOscarsCinemaBinary choice modelsDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe present study formulates regression models that predict the four major Oscar categories (Picture, Director, Actor and Actress). A database was created, collecting publicly available information from 2005 to 2016. The approach taken was to apply discrete choice modelling. A remarkable predictive accuracy was achieved, as every single Oscar winner was correctly predicted. The study found evidence of the crucial role of directors, the predictive power of box office, gender discrepancies in the film industry and the Academy’s biases in the selection of winners related to the film genre, nominees’ body of work and the portrayal of actual events.Rodrigues, Paulo Manuel MarquesRUNAfonso, Pedro Neves Barriga2021-01-20T01:30:26Z2018-01-202018-01-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/32468TID:201861500enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:04Zoai:run.unl.pt:10362/32468Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:52.591538Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The big four: discrete choice modelling to predict the four major Oscar categories |
title |
The big four: discrete choice modelling to predict the four major Oscar categories |
spellingShingle |
The big four: discrete choice modelling to predict the four major Oscar categories Afonso, Pedro Neves Barriga Prediction Oscars Cinema Binary choice models Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
The big four: discrete choice modelling to predict the four major Oscar categories |
title_full |
The big four: discrete choice modelling to predict the four major Oscar categories |
title_fullStr |
The big four: discrete choice modelling to predict the four major Oscar categories |
title_full_unstemmed |
The big four: discrete choice modelling to predict the four major Oscar categories |
title_sort |
The big four: discrete choice modelling to predict the four major Oscar categories |
author |
Afonso, Pedro Neves Barriga |
author_facet |
Afonso, Pedro Neves Barriga |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Paulo Manuel Marques RUN |
dc.contributor.author.fl_str_mv |
Afonso, Pedro Neves Barriga |
dc.subject.por.fl_str_mv |
Prediction Oscars Cinema Binary choice models Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Prediction Oscars Cinema Binary choice models Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The present study formulates regression models that predict the four major Oscar categories (Picture, Director, Actor and Actress). A database was created, collecting publicly available information from 2005 to 2016. The approach taken was to apply discrete choice modelling. A remarkable predictive accuracy was achieved, as every single Oscar winner was correctly predicted. The study found evidence of the crucial role of directors, the predictive power of box office, gender discrepancies in the film industry and the Academy’s biases in the selection of winners related to the film genre, nominees’ body of work and the portrayal of actual events. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-20 2018-01-20T00:00:00Z 2021-01-20T01:30:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/32468 TID:201861500 |
url |
http://hdl.handle.net/10362/32468 |
identifier_str_mv |
TID:201861500 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137923878092800 |