Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research

Detalhes bibliográficos
Autor(a) principal: McDowell, W.
Data de Publicação: 2019
Outros Autores: Sousa, Ronaldo Gomes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/72627
Resumo: Mass mortality events, the rapid, catastrophic die-off of organisms, have recently been recognized as important events in controlling population size, but are difficult to quantify given their infrequency. These events can lead to large inputs of animal carcasses into aquatic ecosystems, which can have ecosystem scale impacts. Invasive freshwater bivalves such as the Asian clam Corbicula fluminea, the zebra mussel Dreissena polymorpha, the golden mussel Limnoperna fortunei, and the Chinese pond mussel Sinanodonta woodiana can attain high densities and biomass and play important roles in aquatic ecosystems through filtration, bioturbation, and excretion. Invasive bivalve species can best be described as R-selected species and appear not to have the same tolerance to abiotic stressors as native species, causing them to be prone to mass mortality events in their invasive range. In contrast to their ecological effects while alive, the frequency and impacts of mass mortality events of invasive freshwater bivalves are not well-understood. Here we review the causes and impacts of mass mortality events, as well as identify important questions for future research. Extreme abiotic conditions, including both drought and flooding, as well as high and low temperatures were the primary drivers of mass mortality events. Short-term impacts of mass mortality events include large pulses of nitrogen and increased oxygen stress due to large amounts of soft tissue decomposition, while shells can impact habitat availability and nutrient cycling for decades. Impacts on biological communities (bacteria, fungi, and macroinvertebrates) are less studied but some examples exist concerning C. fluminea. Better documentation of mass mortality events, particularly their magnitude and frequency, is needed to fully understand the impacts invasive bivalve species have on ecosystems, especially as climate change may make mass mortality events more frequent and/or have a larger magnitude.
id RCAP_880455e5e4eda31aa91d29b992ad0991
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/72627
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future researchboom-bust dynamicsdie-offextreme eventsinvasive speciesnon-indigenous speciesCorbiculaCiências Naturais::Ciências BiológicasScience & TechnologyMass mortality events, the rapid, catastrophic die-off of organisms, have recently been recognized as important events in controlling population size, but are difficult to quantify given their infrequency. These events can lead to large inputs of animal carcasses into aquatic ecosystems, which can have ecosystem scale impacts. Invasive freshwater bivalves such as the Asian clam Corbicula fluminea, the zebra mussel Dreissena polymorpha, the golden mussel Limnoperna fortunei, and the Chinese pond mussel Sinanodonta woodiana can attain high densities and biomass and play important roles in aquatic ecosystems through filtration, bioturbation, and excretion. Invasive bivalve species can best be described as R-selected species and appear not to have the same tolerance to abiotic stressors as native species, causing them to be prone to mass mortality events in their invasive range. In contrast to their ecological effects while alive, the frequency and impacts of mass mortality events of invasive freshwater bivalves are not well-understood. Here we review the causes and impacts of mass mortality events, as well as identify important questions for future research. Extreme abiotic conditions, including both drought and flooding, as well as high and low temperatures were the primary drivers of mass mortality events. Short-term impacts of mass mortality events include large pulses of nitrogen and increased oxygen stress due to large amounts of soft tissue decomposition, while shells can impact habitat availability and nutrient cycling for decades. Impacts on biological communities (bacteria, fungi, and macroinvertebrates) are less studied but some examples exist concerning C. fluminea. Better documentation of mass mortality events, particularly their magnitude and frequency, is needed to fully understand the impacts invasive bivalve species have on ecosystems, especially as climate change may make mass mortality events more frequent and/or have a larger magnitude.This work was supported by funding from the School of Science and Engineering at Merrimack College.Frontiers Media S.A.Universidade do MinhoMcDowell, W.Sousa, Ronaldo Gomes20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72627engMcDowell, W. G. and Sousa, R. (2019) Mass Mortality Events of Invasive Freshwater Bivalves: Current Understanding and Potential Directions for Future Research. Front. Ecol. Evol. 7:331. doi: 10.3389/fevo.2019.003312296-701X10.3389/fevo.2019.00331https://www.frontiersin.org/articles/10.3389/fevo.2019.00331info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:58Zoai:repositorium.sdum.uminho.pt:1822/72627Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:52:13.140284Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
title Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
spellingShingle Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
McDowell, W.
boom-bust dynamics
die-off
extreme events
invasive species
non-indigenous species
Corbicula
Ciências Naturais::Ciências Biológicas
Science & Technology
title_short Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
title_full Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
title_fullStr Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
title_full_unstemmed Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
title_sort Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research
author McDowell, W.
author_facet McDowell, W.
Sousa, Ronaldo Gomes
author_role author
author2 Sousa, Ronaldo Gomes
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv McDowell, W.
Sousa, Ronaldo Gomes
dc.subject.por.fl_str_mv boom-bust dynamics
die-off
extreme events
invasive species
non-indigenous species
Corbicula
Ciências Naturais::Ciências Biológicas
Science & Technology
topic boom-bust dynamics
die-off
extreme events
invasive species
non-indigenous species
Corbicula
Ciências Naturais::Ciências Biológicas
Science & Technology
description Mass mortality events, the rapid, catastrophic die-off of organisms, have recently been recognized as important events in controlling population size, but are difficult to quantify given their infrequency. These events can lead to large inputs of animal carcasses into aquatic ecosystems, which can have ecosystem scale impacts. Invasive freshwater bivalves such as the Asian clam Corbicula fluminea, the zebra mussel Dreissena polymorpha, the golden mussel Limnoperna fortunei, and the Chinese pond mussel Sinanodonta woodiana can attain high densities and biomass and play important roles in aquatic ecosystems through filtration, bioturbation, and excretion. Invasive bivalve species can best be described as R-selected species and appear not to have the same tolerance to abiotic stressors as native species, causing them to be prone to mass mortality events in their invasive range. In contrast to their ecological effects while alive, the frequency and impacts of mass mortality events of invasive freshwater bivalves are not well-understood. Here we review the causes and impacts of mass mortality events, as well as identify important questions for future research. Extreme abiotic conditions, including both drought and flooding, as well as high and low temperatures were the primary drivers of mass mortality events. Short-term impacts of mass mortality events include large pulses of nitrogen and increased oxygen stress due to large amounts of soft tissue decomposition, while shells can impact habitat availability and nutrient cycling for decades. Impacts on biological communities (bacteria, fungi, and macroinvertebrates) are less studied but some examples exist concerning C. fluminea. Better documentation of mass mortality events, particularly their magnitude and frequency, is needed to fully understand the impacts invasive bivalve species have on ecosystems, especially as climate change may make mass mortality events more frequent and/or have a larger magnitude.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/72627
url http://hdl.handle.net/1822/72627
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv McDowell, W. G. and Sousa, R. (2019) Mass Mortality Events of Invasive Freshwater Bivalves: Current Understanding and Potential Directions for Future Research. Front. Ecol. Evol. 7:331. doi: 10.3389/fevo.2019.00331
2296-701X
10.3389/fevo.2019.00331
https://www.frontiersin.org/articles/10.3389/fevo.2019.00331
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133113479069696