Comparison of machine learning methods for the arterial hypertension diagnostics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.1155/2017/5985479 |
Resumo: | Act 211 Government of the Russian Federation (02.A03.21.0006) FCT (AHA CMUP-ERI/HCI/0046/2013) |
id |
RCAP_881374bc989455e4462fca2b33ee5ef4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/53325 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparison of machine learning methods for the arterial hypertension diagnosticsEMPIRICAL MODE DECOMPOSITIONOBSTRUCTIVE SLEEP-APNEAHEART-RATE-VARIABILITYECGDYNAMICSSYSTEMHEALTHBiotechnologyMedicine (miscellaneous)BioengineeringBiomedical EngineeringAct 211 Government of the Russian Federation (02.A03.21.0006) FCT (AHA CMUP-ERI/HCI/0046/2013)The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components.LIBPhys-UNLDF – Departamento de FísicaCeFITec – Centro de Física e Investigação TecnológicaRUNKublanov, Vladimir S.Dolganov, Anton YuBelo, DavidGamboa, Hugo2018-11-30T23:25:27Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.1155/2017/5985479eng1176-2322PURE: 3794256http://www.scopus.com/inward/record.url?scp=85031328575&partnerID=8YFLogxKhttps://doi.org/10.1155/2017/5985479info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-23T01:37:49Zoai:run.unl.pt:10362/53325Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-23T01:37:49Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparison of machine learning methods for the arterial hypertension diagnostics |
title |
Comparison of machine learning methods for the arterial hypertension diagnostics |
spellingShingle |
Comparison of machine learning methods for the arterial hypertension diagnostics Kublanov, Vladimir S. EMPIRICAL MODE DECOMPOSITION OBSTRUCTIVE SLEEP-APNEA HEART-RATE-VARIABILITY ECG DYNAMICS SYSTEM HEALTH Biotechnology Medicine (miscellaneous) Bioengineering Biomedical Engineering |
title_short |
Comparison of machine learning methods for the arterial hypertension diagnostics |
title_full |
Comparison of machine learning methods for the arterial hypertension diagnostics |
title_fullStr |
Comparison of machine learning methods for the arterial hypertension diagnostics |
title_full_unstemmed |
Comparison of machine learning methods for the arterial hypertension diagnostics |
title_sort |
Comparison of machine learning methods for the arterial hypertension diagnostics |
author |
Kublanov, Vladimir S. |
author_facet |
Kublanov, Vladimir S. Dolganov, Anton Yu Belo, David Gamboa, Hugo |
author_role |
author |
author2 |
Dolganov, Anton Yu Belo, David Gamboa, Hugo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
LIBPhys-UNL DF – Departamento de Física CeFITec – Centro de Física e Investigação Tecnológica RUN |
dc.contributor.author.fl_str_mv |
Kublanov, Vladimir S. Dolganov, Anton Yu Belo, David Gamboa, Hugo |
dc.subject.por.fl_str_mv |
EMPIRICAL MODE DECOMPOSITION OBSTRUCTIVE SLEEP-APNEA HEART-RATE-VARIABILITY ECG DYNAMICS SYSTEM HEALTH Biotechnology Medicine (miscellaneous) Bioengineering Biomedical Engineering |
topic |
EMPIRICAL MODE DECOMPOSITION OBSTRUCTIVE SLEEP-APNEA HEART-RATE-VARIABILITY ECG DYNAMICS SYSTEM HEALTH Biotechnology Medicine (miscellaneous) Bioengineering Biomedical Engineering |
description |
Act 211 Government of the Russian Federation (02.A03.21.0006) FCT (AHA CMUP-ERI/HCI/0046/2013) |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2018-11-30T23:25:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1155/2017/5985479 |
url |
https://doi.org/10.1155/2017/5985479 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1176-2322 PURE: 3794256 http://www.scopus.com/inward/record.url?scp=85031328575&partnerID=8YFLogxK https://doi.org/10.1155/2017/5985479 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545663887441920 |