A new regression-based tail index estimator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/27504 |
Resumo: | A new regression-based approach for the estimation of the tail index of heavy-tailed distributions with several important properties is introduced. First, it provides a bias reduction when compared to available regression-based methods; second, it is resilient to the choice of the tail length used for the estimation of the tail index; third, when the effect of the slowly varying function at infinity of the Pareto distribution vanishes slowly, it continues to perform satisfactorily; and fourth, it performs well under dependence of unknown form. An approach to compute the asymptotic variance under time dependence and conditional heteroskcedasticity is also provided. |
id |
RCAP_8864bb0be4f35d90892c3688f7df7c4c |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/27504 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A new regression-based tail index estimatorRegression-based ApproachPareto-type ModelMonte Carlo SimulationHeteroskcedasticityA new regression-based approach for the estimation of the tail index of heavy-tailed distributions with several important properties is introduced. First, it provides a bias reduction when compared to available regression-based methods; second, it is resilient to the choice of the tail length used for the estimation of the tail index; third, when the effect of the slowly varying function at infinity of the Pareto distribution vanishes slowly, it continues to perform satisfactorily; and fourth, it performs well under dependence of unknown form. An approach to compute the asymptotic variance under time dependence and conditional heteroskcedasticity is also provided.Harvard College and the Massachusetts Institute of TechnologyRepositório da Universidade de LisboaNicolau, JoãoRodrigues, Paulo M. M.2023-03-24T10:18:26Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/27504engNicolau, João and Paulo M. M. Rodrigues .(2019). “A new regression-based tail index estimator”. Review of Economics and Statistics, Vol. 101. No. 4: pp. 667-680. (Search PDF in 2023).10.1162/rest_a_00768info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-02T01:34:39Zoai:www.repository.utl.pt:10400.5/27504Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:48:21.372979Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A new regression-based tail index estimator |
title |
A new regression-based tail index estimator |
spellingShingle |
A new regression-based tail index estimator Nicolau, João Regression-based Approach Pareto-type Model Monte Carlo Simulation Heteroskcedasticity |
title_short |
A new regression-based tail index estimator |
title_full |
A new regression-based tail index estimator |
title_fullStr |
A new regression-based tail index estimator |
title_full_unstemmed |
A new regression-based tail index estimator |
title_sort |
A new regression-based tail index estimator |
author |
Nicolau, João |
author_facet |
Nicolau, João Rodrigues, Paulo M. M. |
author_role |
author |
author2 |
Rodrigues, Paulo M. M. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Nicolau, João Rodrigues, Paulo M. M. |
dc.subject.por.fl_str_mv |
Regression-based Approach Pareto-type Model Monte Carlo Simulation Heteroskcedasticity |
topic |
Regression-based Approach Pareto-type Model Monte Carlo Simulation Heteroskcedasticity |
description |
A new regression-based approach for the estimation of the tail index of heavy-tailed distributions with several important properties is introduced. First, it provides a bias reduction when compared to available regression-based methods; second, it is resilient to the choice of the tail length used for the estimation of the tail index; third, when the effect of the slowly varying function at infinity of the Pareto distribution vanishes slowly, it continues to perform satisfactorily; and fourth, it performs well under dependence of unknown form. An approach to compute the asymptotic variance under time dependence and conditional heteroskcedasticity is also provided. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2023-03-24T10:18:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/27504 |
url |
http://hdl.handle.net/10400.5/27504 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nicolau, João and Paulo M. M. Rodrigues .(2019). “A new regression-based tail index estimator”. Review of Economics and Statistics, Vol. 101. No. 4: pp. 667-680. (Search PDF in 2023). 10.1162/rest_a_00768 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Harvard College and the Massachusetts Institute of Technology |
publisher.none.fl_str_mv |
Harvard College and the Massachusetts Institute of Technology |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131565984317440 |