The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/41038 |
Resumo: | Investing in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process. |
id |
RCAP_88cf9270c45e9397cd361b207e1cf97c |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/41038 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment processVenture capitalQuantitative sourcingArtificial intelligenceMachine learningInvestment processData-driven decision-makingCapital de riscoFontes quantitativasInteligência artificialAprendizagem de máquinasProcesso de investimentoTomada de decisões baseada em dadosDomínio/Área Científica::Ciências Sociais::Economia e GestãoInvesting in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process.Investir em startups na sua fase inicial exige um elevado empenho. Os investidores de capital de risco baseiam as suas decisões em pesquisa e experiências passadas, o que pode levar a enviesamentos. Embora muitos investidores de capital de risco ainda utilizem mecanismos de investimento tradicionais, tem havido um aumento na utilização de inteligência artificial e sourcing quantitativo para apoiar o processo de investimento. Esta investigação estuda a utilização e impacto da inteligência artificial e de machine learning ao longo do ciclo de investimento de risco para tomar decisões de investimento. Esta dissertação é um estudo empírico que utiliza uma abordagem de investigação qualitativa sob a forma de entrevistas semi-estruturadas com dez empresas de investimento de capital de risco europeias. Os resultados mostram que os investidores de capital de risco utilizam machine learning e ferramentas de recolha de dados na web, em particular durante o início da oportunidade de negócio, a seleção específica da empresa, e fases gerais de análise do processo de investimento, para resolver os desafios de identificação e seleção. Consequentemente, os processos de investimento tornam-se mais eficientes e menos tendenciosos, permitindo que se utilize mais tempo a aconselhar e a orientar as empresas do portfolio. Este estudo complementa a literatura existente relativamente a como a inteligência artificial e os dados podem elevar os mecanismos de investimento existentes durante o processo de tomada de decisão de capital de risco.Sousa, José VasconcelosVeritati - Repositório Institucional da Universidade Católica PortuguesaSchröpel, Philip Kristian2023-05-05T08:52:16Z2022-10-182022-012022-10-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41038TID:203132645enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:46:37Zoai:repositorio.ucp.pt:10400.14/41038Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:33:43.262767Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
title |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
spellingShingle |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process Schröpel, Philip Kristian Venture capital Quantitative sourcing Artificial intelligence Machine learning Investment process Data-driven decision-making Capital de risco Fontes quantitativas Inteligência artificial Aprendizagem de máquinas Processo de investimento Tomada de decisões baseada em dados Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
title_full |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
title_fullStr |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
title_full_unstemmed |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
title_sort |
The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process |
author |
Schröpel, Philip Kristian |
author_facet |
Schröpel, Philip Kristian |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sousa, José Vasconcelos Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Schröpel, Philip Kristian |
dc.subject.por.fl_str_mv |
Venture capital Quantitative sourcing Artificial intelligence Machine learning Investment process Data-driven decision-making Capital de risco Fontes quantitativas Inteligência artificial Aprendizagem de máquinas Processo de investimento Tomada de decisões baseada em dados Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Venture capital Quantitative sourcing Artificial intelligence Machine learning Investment process Data-driven decision-making Capital de risco Fontes quantitativas Inteligência artificial Aprendizagem de máquinas Processo de investimento Tomada de decisões baseada em dados Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Investing in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-18 2022-01 2022-10-18T00:00:00Z 2023-05-05T08:52:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/41038 TID:203132645 |
url |
http://hdl.handle.net/10400.14/41038 |
identifier_str_mv |
TID:203132645 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132063474909184 |