The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process

Detalhes bibliográficos
Autor(a) principal: Schröpel, Philip Kristian
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/41038
Resumo: Investing in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process.
id RCAP_88cf9270c45e9397cd361b207e1cf97c
oai_identifier_str oai:repositorio.ucp.pt:10400.14/41038
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment processVenture capitalQuantitative sourcingArtificial intelligenceMachine learningInvestment processData-driven decision-makingCapital de riscoFontes quantitativasInteligência artificialAprendizagem de máquinasProcesso de investimentoTomada de decisões baseada em dadosDomínio/Área Científica::Ciências Sociais::Economia e GestãoInvesting in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process.Investir em startups na sua fase inicial exige um elevado empenho. Os investidores de capital de risco baseiam as suas decisões em pesquisa e experiências passadas, o que pode levar a enviesamentos. Embora muitos investidores de capital de risco ainda utilizem mecanismos de investimento tradicionais, tem havido um aumento na utilização de inteligência artificial e sourcing quantitativo para apoiar o processo de investimento. Esta investigação estuda a utilização e impacto da inteligência artificial e de machine learning ao longo do ciclo de investimento de risco para tomar decisões de investimento. Esta dissertação é um estudo empírico que utiliza uma abordagem de investigação qualitativa sob a forma de entrevistas semi-estruturadas com dez empresas de investimento de capital de risco europeias. Os resultados mostram que os investidores de capital de risco utilizam machine learning e ferramentas de recolha de dados na web, em particular durante o início da oportunidade de negócio, a seleção específica da empresa, e fases gerais de análise do processo de investimento, para resolver os desafios de identificação e seleção. Consequentemente, os processos de investimento tornam-se mais eficientes e menos tendenciosos, permitindo que se utilize mais tempo a aconselhar e a orientar as empresas do portfolio. Este estudo complementa a literatura existente relativamente a como a inteligência artificial e os dados podem elevar os mecanismos de investimento existentes durante o processo de tomada de decisão de capital de risco.Sousa, José VasconcelosVeritati - Repositório Institucional da Universidade Católica PortuguesaSchröpel, Philip Kristian2023-05-05T08:52:16Z2022-10-182022-012022-10-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41038TID:203132645enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:46:37Zoai:repositorio.ucp.pt:10400.14/41038Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:33:43.262767Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
title The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
spellingShingle The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
Schröpel, Philip Kristian
Venture capital
Quantitative sourcing
Artificial intelligence
Machine learning
Investment process
Data-driven decision-making
Capital de risco
Fontes quantitativas
Inteligência artificial
Aprendizagem de máquinas
Processo de investimento
Tomada de decisões baseada em dados
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
title_full The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
title_fullStr The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
title_full_unstemmed The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
title_sort The future of venture capital decision making : the impact of quantitative sourcing and machine learning on the VC Investment process
author Schröpel, Philip Kristian
author_facet Schröpel, Philip Kristian
author_role author
dc.contributor.none.fl_str_mv Sousa, José Vasconcelos
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Schröpel, Philip Kristian
dc.subject.por.fl_str_mv Venture capital
Quantitative sourcing
Artificial intelligence
Machine learning
Investment process
Data-driven decision-making
Capital de risco
Fontes quantitativas
Inteligência artificial
Aprendizagem de máquinas
Processo de investimento
Tomada de decisões baseada em dados
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Venture capital
Quantitative sourcing
Artificial intelligence
Machine learning
Investment process
Data-driven decision-making
Capital de risco
Fontes quantitativas
Inteligência artificial
Aprendizagem de máquinas
Processo de investimento
Tomada de decisões baseada em dados
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Investing in early-stage startups is a difficult endeavor. Venture Capitalists use heuristics and base their decisions on past experiences, which can lead to biases. Recently, Venture Capitalists are increasingly using artificial intelligence and quantitative sourcing to support their investment process, while others still rely on traditional investment mechanisms. This research investigates the usage and impact of artificial intelligence and machine learning throughout the venture investment cycle to make investment decisions. This dissertation is an exploratory study that employs a qualitative research approach in the form of semi-structured interviews with ten European Venture Capitalists. The results show that Venture Capitalists utilize machine learning and web scraper tools, particularly during the deal origination, firm-specific screening, and general screening stages of the investment process, to solve the identification and selection challenges. As a result, investment processes become more efficient and less biased, allowing for more time to be spent advising and mentoring portfolio startups. It adds to the existing literature on how artificial intelligence and data can augment existing investment mechanisms during the venture capital decision-making process.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-18
2022-01
2022-10-18T00:00:00Z
2023-05-05T08:52:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/41038
TID:203132645
url http://hdl.handle.net/10400.14/41038
identifier_str_mv TID:203132645
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132063474909184