Multimodal quantification of depression using machine learning

Detalhes bibliográficos
Autor(a) principal: Ribeiro, João António Lopes
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33917
Resumo: Depression is a mental disorder that is increasingly becoming common in people’s lives and that can have serious implications on human beings. Over 264 million people worldwide suffer from this disorder, and the trend is for these numbers to increase over the years. With this in mind, it is necessary to develop depression recognition and prediction methods by analysing natural language, non-verbal behaviours and speech processing. This is an area of study with high interest, since it can support clinicians on patients diagnosis and treatments, as well as it can also serve the patients by receiving a robust diagnosis and an adequate treatment guide so they can overcome the disorder. This dissertation focuses on developing a method that can quantify and predict if a person suffers from depression, basing itself on studies and articles in the area, published in international conferences. With access to interviews and clinical data, a language and speech analysis for each participant was performed, with the intent of extracting key characteristics that could assist depression identification. After the extraction, experiments with unimodal and multimodal models were developed with the objective of quantifying depression correctly for each participant. These models outperformed the AVEC conference baseline and presented comparable results with other published models in that same conference.
id RCAP_898da791da60e0a7231aa4b1cd2d84a6
oai_identifier_str oai:ria.ua.pt:10773/33917
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multimodal quantification of depression using machine learningDepression predictionNatural language processingSpeech processingMultimodalMachine learningDepression is a mental disorder that is increasingly becoming common in people’s lives and that can have serious implications on human beings. Over 264 million people worldwide suffer from this disorder, and the trend is for these numbers to increase over the years. With this in mind, it is necessary to develop depression recognition and prediction methods by analysing natural language, non-verbal behaviours and speech processing. This is an area of study with high interest, since it can support clinicians on patients diagnosis and treatments, as well as it can also serve the patients by receiving a robust diagnosis and an adequate treatment guide so they can overcome the disorder. This dissertation focuses on developing a method that can quantify and predict if a person suffers from depression, basing itself on studies and articles in the area, published in international conferences. With access to interviews and clinical data, a language and speech analysis for each participant was performed, with the intent of extracting key characteristics that could assist depression identification. After the extraction, experiments with unimodal and multimodal models were developed with the objective of quantifying depression correctly for each participant. These models outperformed the AVEC conference baseline and presented comparable results with other published models in that same conference.A depressão é uma doença mental que cada vez mais se está a tornar comum na vida das pessoas e que pode ter implicações muito sérias no ser humano. Mais de 264 milhões de pessoas em todo o mundo sofrem com esta doença e a tendência é para estes números aumentarem ao longo dos anos. Tendo isto em conta, é necessário desenvolver métodos de reconhecimento e de previsão da depressão através da análise de linguagem natural, de comportamentos não verbais e de processamento de voz. Esta é uma área de estudo com elevado interesse, pois tanto pode servir os clínicos no apoio ao diagnóstico e ao tratamento de pacientes com esta doença mental, como também pode servir os pacientes ao receberem um diagnóstico robusto e um guia de tratamento adequado para conseguirem superar a doença. Esta dissertação foca-se no desenvolvimento de um método de quantificação e previsão da depressão numa pessoa, baseando-se em estudos e artigos na área, publicados em conferências internacionais. Com acesso a entrevistas e a dados clínicos, foi realizada uma análise da linguagem e uma análise da voz de cada participante, com o intuito de extrair características específicas que pudessem auxiliar a identificação de depressão. Após esta extração, foram desenvolvidas experiências com modelos unimodais e multimodais com o objetivo de conseguir quantificar corretamente a depressão de cada participante. Estes modelos ultrapassaram a base de referência da conferência AVEC, com resultados comparáveis a outros modelos publicados nesta mesma conferência.2022-05-18T13:33:31Z2021-12-13T00:00:00Z2021-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33917engRibeiro, João António Lopesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:15Zoai:ria.ua.pt:10773/33917Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:16.145676Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multimodal quantification of depression using machine learning
title Multimodal quantification of depression using machine learning
spellingShingle Multimodal quantification of depression using machine learning
Ribeiro, João António Lopes
Depression prediction
Natural language processing
Speech processing
Multimodal
Machine learning
title_short Multimodal quantification of depression using machine learning
title_full Multimodal quantification of depression using machine learning
title_fullStr Multimodal quantification of depression using machine learning
title_full_unstemmed Multimodal quantification of depression using machine learning
title_sort Multimodal quantification of depression using machine learning
author Ribeiro, João António Lopes
author_facet Ribeiro, João António Lopes
author_role author
dc.contributor.author.fl_str_mv Ribeiro, João António Lopes
dc.subject.por.fl_str_mv Depression prediction
Natural language processing
Speech processing
Multimodal
Machine learning
topic Depression prediction
Natural language processing
Speech processing
Multimodal
Machine learning
description Depression is a mental disorder that is increasingly becoming common in people’s lives and that can have serious implications on human beings. Over 264 million people worldwide suffer from this disorder, and the trend is for these numbers to increase over the years. With this in mind, it is necessary to develop depression recognition and prediction methods by analysing natural language, non-verbal behaviours and speech processing. This is an area of study with high interest, since it can support clinicians on patients diagnosis and treatments, as well as it can also serve the patients by receiving a robust diagnosis and an adequate treatment guide so they can overcome the disorder. This dissertation focuses on developing a method that can quantify and predict if a person suffers from depression, basing itself on studies and articles in the area, published in international conferences. With access to interviews and clinical data, a language and speech analysis for each participant was performed, with the intent of extracting key characteristics that could assist depression identification. After the extraction, experiments with unimodal and multimodal models were developed with the objective of quantifying depression correctly for each participant. These models outperformed the AVEC conference baseline and presented comparable results with other published models in that same conference.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-13T00:00:00Z
2021-12-13
2022-05-18T13:33:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33917
url http://hdl.handle.net/10773/33917
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137707789647872