Self-similarity principle: the reduced description of randomness

Detalhes bibliográficos
Autor(a) principal: Nigmatullin, Raoul R.
Data de Publicação: 2013
Outros Autores: Machado, J. A. Tenreiro, Menezes, Rui
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/3808
Resumo: A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
id RCAP_89b0516a1a42d9a2584da2a036db7aab
oai_identifier_str oai:recipp.ipp.pt:10400.22/3808
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Self-similarity principle: the reduced description of randomnessSelf-similar (fractal) processesSolutions of the functional equationsComplex systemsFit of economicalWeather data seriesA new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.SpringerRepositório Científico do Instituto Politécnico do PortoNigmatullin, Raoul R.Machado, J. A. TenreiroMenezes, Rui2014-02-07T15:21:51Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3808eng1895-108210.2478/s11534-013-0181-9info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:43:37Zoai:recipp.ipp.pt:10400.22/3808Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:24:45.961457Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Self-similarity principle: the reduced description of randomness
title Self-similarity principle: the reduced description of randomness
spellingShingle Self-similarity principle: the reduced description of randomness
Nigmatullin, Raoul R.
Self-similar (fractal) processes
Solutions of the functional equations
Complex systems
Fit of economical
Weather data series
title_short Self-similarity principle: the reduced description of randomness
title_full Self-similarity principle: the reduced description of randomness
title_fullStr Self-similarity principle: the reduced description of randomness
title_full_unstemmed Self-similarity principle: the reduced description of randomness
title_sort Self-similarity principle: the reduced description of randomness
author Nigmatullin, Raoul R.
author_facet Nigmatullin, Raoul R.
Machado, J. A. Tenreiro
Menezes, Rui
author_role author
author2 Machado, J. A. Tenreiro
Menezes, Rui
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Nigmatullin, Raoul R.
Machado, J. A. Tenreiro
Menezes, Rui
dc.subject.por.fl_str_mv Self-similar (fractal) processes
Solutions of the functional equations
Complex systems
Fit of economical
Weather data series
topic Self-similar (fractal) processes
Solutions of the functional equations
Complex systems
Fit of economical
Weather data series
description A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
2014-02-07T15:21:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/3808
url http://hdl.handle.net/10400.22/3808
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1895-1082
10.2478/s11534-013-0181-9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131340474417152