First integrals for problems of calculus of variations on locally convex spaces

Detalhes bibliográficos
Autor(a) principal: Rocha, E.A.M.
Data de Publicação: 2008
Outros Autores: Torres, D.F.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/4089
Resumo: The fundamental problem of calculus of variations is considered when solutions are differentiable curves on locally convex spaces. Such problems admit an extension of the Eulcr-Lagrange equations (Orlov. 2002) for continuously normally differentiable Lagrangians. Here, we formulate a Legcndre condition and an extension of the classical theorem of Emmy Noethcr, thus obtaining first integrals for problems of the calculus of variations on locally convex spaces. © Balkan Society of Geometers, Geometry Balkan Press 2008.
id RCAP_8a260a7ece6eaa0f045ad32ef2b6d870
oai_identifier_str oai:ria.ua.pt:10773/4089
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling First integrals for problems of calculus of variations on locally convex spacesCalculus of variationsLocally convex spacesNoether's theoremThe fundamental problem of calculus of variations is considered when solutions are differentiable curves on locally convex spaces. Such problems admit an extension of the Eulcr-Lagrange equations (Orlov. 2002) for continuously normally differentiable Lagrangians. Here, we formulate a Legcndre condition and an extension of the classical theorem of Emmy Noethcr, thus obtaining first integrals for problems of the calculus of variations on locally convex spaces. © Balkan Society of Geometers, Geometry Balkan Press 2008.Balcan Society of Geometers2011-10-10T11:44:42Z2008-01-01T00:00:00Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4089eng1454-5101Rocha, E.A.M.Torres, D.F.M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:20Zoai:ria.ua.pt:10773/4089Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:09.732724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv First integrals for problems of calculus of variations on locally convex spaces
title First integrals for problems of calculus of variations on locally convex spaces
spellingShingle First integrals for problems of calculus of variations on locally convex spaces
Rocha, E.A.M.
Calculus of variations
Locally convex spaces
Noether's theorem
title_short First integrals for problems of calculus of variations on locally convex spaces
title_full First integrals for problems of calculus of variations on locally convex spaces
title_fullStr First integrals for problems of calculus of variations on locally convex spaces
title_full_unstemmed First integrals for problems of calculus of variations on locally convex spaces
title_sort First integrals for problems of calculus of variations on locally convex spaces
author Rocha, E.A.M.
author_facet Rocha, E.A.M.
Torres, D.F.M.
author_role author
author2 Torres, D.F.M.
author2_role author
dc.contributor.author.fl_str_mv Rocha, E.A.M.
Torres, D.F.M.
dc.subject.por.fl_str_mv Calculus of variations
Locally convex spaces
Noether's theorem
topic Calculus of variations
Locally convex spaces
Noether's theorem
description The fundamental problem of calculus of variations is considered when solutions are differentiable curves on locally convex spaces. Such problems admit an extension of the Eulcr-Lagrange equations (Orlov. 2002) for continuously normally differentiable Lagrangians. Here, we formulate a Legcndre condition and an extension of the classical theorem of Emmy Noethcr, thus obtaining first integrals for problems of the calculus of variations on locally convex spaces. © Balkan Society of Geometers, Geometry Balkan Press 2008.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01T00:00:00Z
2008
2011-10-10T11:44:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/4089
url http://hdl.handle.net/10773/4089
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1454-5101
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Balcan Society of Geometers
publisher.none.fl_str_mv Balcan Society of Geometers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137469871947776