Horizon geometry for Kerr black holes with synchronized hair

Detalhes bibliográficos
Autor(a) principal: Delgado, J. F. M.
Data de Publicação: 2018
Outros Autores: Herdeiro, C. A. R., Radu, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24121
Resumo: We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [ 1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E-3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin j(H) (which equals the total dimensionless spin, j), the sphericity (sic) and the horizon linear velocity v(H) are smaller than critical values, j((S)), (sic)((S)), v(H)((S)) respectively. For the hairy BHs, we find that j(H) < j((S)) is a sufficient, but not necessary, condition for being embeddable; vH < v(H)((S)) is a necessary, but not sufficient, condition for being embeddable; whereas (sic) < (sic)((S)) is a necessary and sufficient condition for being embeddable in E-3. Thus, the latter quantity provides the most faithful diagnosis for the existence of an E-3 embedding within the whole family of solutions. We also observe that sufficiently hairy BHs are always embeddable, even if j-which for hairy BHs (unlike Kerr BHs) differs from j(H)-is larger than unity.
id RCAP_8a7963f9a073a82bdd8f2228735e0ebe
oai_identifier_str oai:ria.ua.pt:10773/24121
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Horizon geometry for Kerr black holes with synchronized hairWe study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [ 1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E-3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin j(H) (which equals the total dimensionless spin, j), the sphericity (sic) and the horizon linear velocity v(H) are smaller than critical values, j((S)), (sic)((S)), v(H)((S)) respectively. For the hairy BHs, we find that j(H) < j((S)) is a sufficient, but not necessary, condition for being embeddable; vH < v(H)((S)) is a necessary, but not sufficient, condition for being embeddable; whereas (sic) < (sic)((S)) is a necessary and sufficient condition for being embeddable in E-3. Thus, the latter quantity provides the most faithful diagnosis for the existence of an E-3 embedding within the whole family of solutions. We also observe that sufficiently hairy BHs are always embeddable, even if j-which for hairy BHs (unlike Kerr BHs) differs from j(H)-is larger than unity.American Physical Society2018-09-21T13:24:03Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24121eng2470-001010.1103/PhysRevD.97.124012Delgado, J. F. M.Herdeiro, C. A. R.Radu, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:47:28Zoai:ria.ua.pt:10773/24121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:57:55.244282Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Horizon geometry for Kerr black holes with synchronized hair
title Horizon geometry for Kerr black holes with synchronized hair
spellingShingle Horizon geometry for Kerr black holes with synchronized hair
Delgado, J. F. M.
title_short Horizon geometry for Kerr black holes with synchronized hair
title_full Horizon geometry for Kerr black holes with synchronized hair
title_fullStr Horizon geometry for Kerr black holes with synchronized hair
title_full_unstemmed Horizon geometry for Kerr black holes with synchronized hair
title_sort Horizon geometry for Kerr black holes with synchronized hair
author Delgado, J. F. M.
author_facet Delgado, J. F. M.
Herdeiro, C. A. R.
Radu, E.
author_role author
author2 Herdeiro, C. A. R.
Radu, E.
author2_role author
author
dc.contributor.author.fl_str_mv Delgado, J. F. M.
Herdeiro, C. A. R.
Radu, E.
description We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [ 1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E-3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin j(H) (which equals the total dimensionless spin, j), the sphericity (sic) and the horizon linear velocity v(H) are smaller than critical values, j((S)), (sic)((S)), v(H)((S)) respectively. For the hairy BHs, we find that j(H) < j((S)) is a sufficient, but not necessary, condition for being embeddable; vH < v(H)((S)) is a necessary, but not sufficient, condition for being embeddable; whereas (sic) < (sic)((S)) is a necessary and sufficient condition for being embeddable in E-3. Thus, the latter quantity provides the most faithful diagnosis for the existence of an E-3 embedding within the whole family of solutions. We also observe that sufficiently hairy BHs are always embeddable, even if j-which for hairy BHs (unlike Kerr BHs) differs from j(H)-is larger than unity.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-21T13:24:03Z
2018-01-01T00:00:00Z
2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24121
url http://hdl.handle.net/10773/24121
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0010
10.1103/PhysRevD.97.124012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137633833582592