Predicting the Surface Tension of Deep Eutectic Solvents

Detalhes bibliográficos
Autor(a) principal: Halder, Amit Kumar
Data de Publicação: 2022
Outros Autores: Haghbakhsh, Reza, Voroshylova, Iuliia V., Duarte, Ana Rita C., Cordeiro, Maria Natália D. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/150733
Resumo: Publisher Copyright: © 2022 by the authors.
id RCAP_8c11cc0074e31b78c02d14b98310d5c4
oai_identifier_str oai:run.unl.pt:10362/150733
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting the Surface Tension of Deep Eutectic SolventsA Step Forward in the Use of Greener Solventsconsensus modelingDESin silico-based modelsQSPRsurface tensionvalidationAnalytical ChemistryChemistry (miscellaneous)Molecular MedicinePharmaceutical ScienceDrug DiscoveryPhysical and Theoretical ChemistryOrganic ChemistryPublisher Copyright: © 2022 by the authors.Deep eutectic solvents (DES) are an important class of green solvents that have been developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs requires fine-tuning their physicochemical properties. Among others, surface tension is one of such properties that have to be considered while designing novel DESs. In this work, we present the results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling efforts designed to predict the surface tension of DESs, following the Organization for Economic Co-operation and Development (OECD) guidelines. The data set used comprises a large number of structurally diverse binary DESs and the models were built systematically through rigorous validation methods, including ‘mixtures-out’- and ‘compounds-out’-based data splitting. The most predictive individual QSPR model found is shown to be statistically robust, besides providing valuable information about the structural and physicochemical features responsible for the surface tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple predictive models led to consensus models with similar statistical robustness to the individual QSPR model. The benefits of the present work stand out also from its reproducibility since it relies on fully specified computational procedures and on publicly available tools. Finally, our results not only guide the future design and screening of novel DESs with a desirable surface tension but also lays out strategies for efficiently setting up silico-based models for binary mixtures.LAQV@REQUIMTEDQ - Departamento de QuímicaRUNHalder, Amit KumarHaghbakhsh, RezaVoroshylova, Iuliia V.Duarte, Ana Rita C.Cordeiro, Maria Natália D. S.2023-03-16T22:38:39Z2022-07-312022-07-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/150733eng1420-3049PURE: 56129476https://doi.org/10.3390/molecules27154896info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:05Zoai:run.unl.pt:10362/150733Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:17.367877Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting the Surface Tension of Deep Eutectic Solvents
A Step Forward in the Use of Greener Solvents
title Predicting the Surface Tension of Deep Eutectic Solvents
spellingShingle Predicting the Surface Tension of Deep Eutectic Solvents
Halder, Amit Kumar
consensus modeling
DES
in silico-based models
QSPR
surface tension
validation
Analytical Chemistry
Chemistry (miscellaneous)
Molecular Medicine
Pharmaceutical Science
Drug Discovery
Physical and Theoretical Chemistry
Organic Chemistry
title_short Predicting the Surface Tension of Deep Eutectic Solvents
title_full Predicting the Surface Tension of Deep Eutectic Solvents
title_fullStr Predicting the Surface Tension of Deep Eutectic Solvents
title_full_unstemmed Predicting the Surface Tension of Deep Eutectic Solvents
title_sort Predicting the Surface Tension of Deep Eutectic Solvents
author Halder, Amit Kumar
author_facet Halder, Amit Kumar
Haghbakhsh, Reza
Voroshylova, Iuliia V.
Duarte, Ana Rita C.
Cordeiro, Maria Natália D. S.
author_role author
author2 Haghbakhsh, Reza
Voroshylova, Iuliia V.
Duarte, Ana Rita C.
Cordeiro, Maria Natália D. S.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv LAQV@REQUIMTE
DQ - Departamento de Química
RUN
dc.contributor.author.fl_str_mv Halder, Amit Kumar
Haghbakhsh, Reza
Voroshylova, Iuliia V.
Duarte, Ana Rita C.
Cordeiro, Maria Natália D. S.
dc.subject.por.fl_str_mv consensus modeling
DES
in silico-based models
QSPR
surface tension
validation
Analytical Chemistry
Chemistry (miscellaneous)
Molecular Medicine
Pharmaceutical Science
Drug Discovery
Physical and Theoretical Chemistry
Organic Chemistry
topic consensus modeling
DES
in silico-based models
QSPR
surface tension
validation
Analytical Chemistry
Chemistry (miscellaneous)
Molecular Medicine
Pharmaceutical Science
Drug Discovery
Physical and Theoretical Chemistry
Organic Chemistry
description Publisher Copyright: © 2022 by the authors.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-31
2022-07-31T00:00:00Z
2023-03-16T22:38:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/150733
url http://hdl.handle.net/10362/150733
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1420-3049
PURE: 56129476
https://doi.org/10.3390/molecules27154896
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 18
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138131954368512