Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil

Detalhes bibliográficos
Autor(a) principal: Sofia Reboleira, Ana
Data de Publicação: 2022
Outros Autores: Bodawatta, Kasun H., Ravn, Nynne M. R., Lauritzen, Stein-Erik, Skoglund, Rannveig Øvrevik, Poulsen, Michael, Michelsen, Anders, Jønsson, Knud Andreas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/54286
Resumo: Background: Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. Results: Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacte‑ rial communities in caves were compositionally diferent, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communi‑ ties. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. Conclusions: Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient infux, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the founda‑ tion to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.
id RCAP_8c75d1bfd5e0052288117f7ceb95cd1f
oai_identifier_str oai:repositorio.ul.pt:10451/54286
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soilBackground: Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. Results: Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacte‑ rial communities in caves were compositionally diferent, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communi‑ ties. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. Conclusions: Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient infux, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the founda‑ tion to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.BMCRepositório da Universidade de LisboaSofia Reboleira, AnaBodawatta, Kasun H.Ravn, Nynne M. R.Lauritzen, Stein-ErikSkoglund, Rannveig ØvrevikPoulsen, MichaelMichelsen, AndersJønsson, Knud Andreas2022-09-02T16:52:57Z2022-082022-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/54286engReboleira, A.S., Bodawatta, K.H., Ravn, N.M.R. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environmental Microbiome 17, 41 (2022). https://doi.org/10.1186/s40793-022-00435-z10.1186/s40793-022-00435-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:00:44Zoai:repositorio.ul.pt:10451/54286Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:05:12.852235Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
title Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
spellingShingle Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
Sofia Reboleira, Ana
title_short Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
title_full Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
title_fullStr Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
title_full_unstemmed Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
title_sort Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil
author Sofia Reboleira, Ana
author_facet Sofia Reboleira, Ana
Bodawatta, Kasun H.
Ravn, Nynne M. R.
Lauritzen, Stein-Erik
Skoglund, Rannveig Øvrevik
Poulsen, Michael
Michelsen, Anders
Jønsson, Knud Andreas
author_role author
author2 Bodawatta, Kasun H.
Ravn, Nynne M. R.
Lauritzen, Stein-Erik
Skoglund, Rannveig Øvrevik
Poulsen, Michael
Michelsen, Anders
Jønsson, Knud Andreas
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Sofia Reboleira, Ana
Bodawatta, Kasun H.
Ravn, Nynne M. R.
Lauritzen, Stein-Erik
Skoglund, Rannveig Øvrevik
Poulsen, Michael
Michelsen, Anders
Jønsson, Knud Andreas
description Background: Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. Results: Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacte‑ rial communities in caves were compositionally diferent, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communi‑ ties. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. Conclusions: Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient infux, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the founda‑ tion to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-02T16:52:57Z
2022-08
2022-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/54286
url http://hdl.handle.net/10451/54286
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Reboleira, A.S., Bodawatta, K.H., Ravn, N.M.R. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environmental Microbiome 17, 41 (2022). https://doi.org/10.1186/s40793-022-00435-z
10.1186/s40793-022-00435-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC
publisher.none.fl_str_mv BMC
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134603452088320