Perfectness in locales

Detalhes bibliográficos
Autor(a) principal: Gutiérrez García, Javier
Data de Publicação: 2017
Outros Autores: Kubiak, Tomasz, Picado, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/43888
https://doi.org/10.2989/16073606.2017.1299810
Resumo: This paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade.
id RCAP_8c8ab9f8aa633e3eed028e74eb7e754f
oai_identifier_str oai:estudogeral.uc.pt:10316/43888
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Perfectness in localesThis paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade.Taylor & Francis2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43888http://hdl.handle.net/10316/43888https://doi.org/10.2989/16073606.2017.1299810https://doi.org/10.2989/16073606.2017.1299810enghttp://dx.doi.org/10.2989/16073606.2017.1299810Gutiérrez García, JavierKubiak, TomaszPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:39Zoai:estudogeral.uc.pt:10316/43888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:29.368248Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Perfectness in locales
title Perfectness in locales
spellingShingle Perfectness in locales
Gutiérrez García, Javier
title_short Perfectness in locales
title_full Perfectness in locales
title_fullStr Perfectness in locales
title_full_unstemmed Perfectness in locales
title_sort Perfectness in locales
author Gutiérrez García, Javier
author_facet Gutiérrez García, Javier
Kubiak, Tomasz
Picado, Jorge
author_role author
author2 Kubiak, Tomasz
Picado, Jorge
author2_role author
author
dc.contributor.author.fl_str_mv Gutiérrez García, Javier
Kubiak, Tomasz
Picado, Jorge
description This paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/43888
http://hdl.handle.net/10316/43888
https://doi.org/10.2989/16073606.2017.1299810
https://doi.org/10.2989/16073606.2017.1299810
url http://hdl.handle.net/10316/43888
https://doi.org/10.2989/16073606.2017.1299810
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.2989/16073606.2017.1299810
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821600268288