Perfectness in locales
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43888 https://doi.org/10.2989/16073606.2017.1299810 |
Resumo: | This paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade. |
id |
RCAP_8c8ab9f8aa633e3eed028e74eb7e754f |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43888 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Perfectness in localesThis paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade.Taylor & Francis2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43888http://hdl.handle.net/10316/43888https://doi.org/10.2989/16073606.2017.1299810https://doi.org/10.2989/16073606.2017.1299810enghttp://dx.doi.org/10.2989/16073606.2017.1299810Gutiérrez García, JavierKubiak, TomaszPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:39Zoai:estudogeral.uc.pt:10316/43888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:29.368248Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Perfectness in locales |
title |
Perfectness in locales |
spellingShingle |
Perfectness in locales Gutiérrez García, Javier |
title_short |
Perfectness in locales |
title_full |
Perfectness in locales |
title_fullStr |
Perfectness in locales |
title_full_unstemmed |
Perfectness in locales |
title_sort |
Perfectness in locales |
author |
Gutiérrez García, Javier |
author_facet |
Gutiérrez García, Javier Kubiak, Tomasz Picado, Jorge |
author_role |
author |
author2 |
Kubiak, Tomasz Picado, Jorge |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Gutiérrez García, Javier Kubiak, Tomasz Picado, Jorge |
description |
This paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43888 http://hdl.handle.net/10316/43888 https://doi.org/10.2989/16073606.2017.1299810 https://doi.org/10.2989/16073606.2017.1299810 |
url |
http://hdl.handle.net/10316/43888 https://doi.org/10.2989/16073606.2017.1299810 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.2989/16073606.2017.1299810 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821600268288 |