Matrix approach to hypercomplex Appell polynomials

Detalhes bibliográficos
Autor(a) principal: Aceto, Lídia
Data de Publicação: 2017
Outros Autores: Malonek, Helmuth R., Tomaz, Graça
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/21347
Resumo: Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
id RCAP_8ccc9a31fabbc2bf378a066d2e0984c8
oai_identifier_str oai:ria.ua.pt:10773/21347
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Matrix approach to hypercomplex Appell polynomialsHypercomplex differentiabilityAppell polynomialsCreation matrixPascal matrixRecently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.Elsevier2018-01-05T16:36:43Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21347eng0168-927410.1016/j.apnum.2016.07.006Aceto, LídiaMalonek, Helmuth R.Tomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:42:06Zoai:ria.ua.pt:10773/21347Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:55:54.455813Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Matrix approach to hypercomplex Appell polynomials
title Matrix approach to hypercomplex Appell polynomials
spellingShingle Matrix approach to hypercomplex Appell polynomials
Aceto, Lídia
Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
title_short Matrix approach to hypercomplex Appell polynomials
title_full Matrix approach to hypercomplex Appell polynomials
title_fullStr Matrix approach to hypercomplex Appell polynomials
title_full_unstemmed Matrix approach to hypercomplex Appell polynomials
title_sort Matrix approach to hypercomplex Appell polynomials
author Aceto, Lídia
author_facet Aceto, Lídia
Malonek, Helmuth R.
Tomaz, Graça
author_role author
author2 Malonek, Helmuth R.
Tomaz, Graça
author2_role author
author
dc.contributor.author.fl_str_mv Aceto, Lídia
Malonek, Helmuth R.
Tomaz, Graça
dc.subject.por.fl_str_mv Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
topic Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
description Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2018-01-05T16:36:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/21347
url http://hdl.handle.net/10773/21347
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0168-9274
10.1016/j.apnum.2016.07.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137612820119552