Matrix approach to hypercomplex Appell polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/21347 |
Resumo: | Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
id |
RCAP_8ccc9a31fabbc2bf378a066d2e0984c8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21347 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Matrix approach to hypercomplex Appell polynomialsHypercomplex differentiabilityAppell polynomialsCreation matrixPascal matrixRecently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.Elsevier2018-01-05T16:36:43Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21347eng0168-927410.1016/j.apnum.2016.07.006Aceto, LídiaMalonek, Helmuth R.Tomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:42:06Zoai:ria.ua.pt:10773/21347Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:55:54.455813Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Matrix approach to hypercomplex Appell polynomials |
title |
Matrix approach to hypercomplex Appell polynomials |
spellingShingle |
Matrix approach to hypercomplex Appell polynomials Aceto, Lídia Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
title_short |
Matrix approach to hypercomplex Appell polynomials |
title_full |
Matrix approach to hypercomplex Appell polynomials |
title_fullStr |
Matrix approach to hypercomplex Appell polynomials |
title_full_unstemmed |
Matrix approach to hypercomplex Appell polynomials |
title_sort |
Matrix approach to hypercomplex Appell polynomials |
author |
Aceto, Lídia |
author_facet |
Aceto, Lídia Malonek, Helmuth R. Tomaz, Graça |
author_role |
author |
author2 |
Malonek, Helmuth R. Tomaz, Graça |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aceto, Lídia Malonek, Helmuth R. Tomaz, Graça |
dc.subject.por.fl_str_mv |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
topic |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
description |
Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-01-05T16:36:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21347 |
url |
http://hdl.handle.net/10773/21347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0168-9274 10.1016/j.apnum.2016.07.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137612820119552 |