Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/13010 |
Resumo: | Water Vapour estimation using ground-based Global Navigation Satellite System (GNSS) observations is a well-established technology that contributes to weather forecast, research, and climate monitoring. Water vapour in the atmosphere is directly related with precipitation that may lead to extreme event (e.g., floods). The application of GNSS to sense the total amount of water vapour integrated along the signal path in the troposphere is what is referred to as GNSS meteorology. GNSS has the advantage of all-weather condition, low cost with high temporal and spatial resolution when compared to other classical methods of water vapour measuring that are expensive and/or with low spatial and temporal coverage. When GNSS signals are transmitted from GNSS satellites in space to ground-based GNSS receivers, they experience a tropospheric delay (an error source in GNSS positioning) often represented in GNSS meteorology as the Zenith Total Delay (ZTD). The ZTD is the sum of the Zenith Hydrostatic Delay and the Zenith Wet Delay and it is one of the products of GNSS data processing. The ZTD can be converted to Precipitable Water Vapour (PWV) when surface temperature and pressure values are known at the GNSS site using a conversion factor (?) that is dependent on the weighted mean temperature (Tm) and pressure. This dissertation focuses on the estimation and analysis of water vapour in Nigeria using GNSS observations. The Nigerian Permanent GNSS Network (NIGNET) stations observations and products were retrieved from the infrastructure implemented by Office of the Surveyor General of the Federation (OSGoF). Processing of the data was carried out using online software (GipsyX) for the estimation of ZTD. Fifteen GNSS stations were used in this research and the period 2009 to 2021 was considered. The characteristics of the ZTD over the territory of Nigeria was investigated. The range of ZTD variation in Nigeria for the period used in this research was found to be approximately between 1900mm to 2700mm in the NIGNET stations. The two main seasons in Nigeria were significantly noticed as low peaks were found to be occurring during the dry (winter) season while high peaks were remarkably seen during the rainy (summer) season. The amplitude of the seasonal variation within the period under investigation is between a minimum of 36mm to a maximum of 124mm with the Northern region having higher values than the Southern part. It was discovered ultimately by the results obtained from the analyses, that ZTD variation in both the Northern and Southern regions are influenced by the 4 distinct climates and other local weather conditions including temperature and the trade wind from Sahara Desert and the Atlantic Ocean. |
id |
RCAP_8ce24858aa85e3c945a41cee6757a3fb |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/13010 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of Precipitable Water Vapour in Nigeria using GNSS ObservationsAtraso Zenital TotalGnssMeteorologia GnssNignet – Rede de Estações Permanentes da NigériaVapor de Água PrecipitávelDomínio/Área Científica::Engenharia e Tecnologia::Sistemas de Informação GeográficaWater Vapour estimation using ground-based Global Navigation Satellite System (GNSS) observations is a well-established technology that contributes to weather forecast, research, and climate monitoring. Water vapour in the atmosphere is directly related with precipitation that may lead to extreme event (e.g., floods). The application of GNSS to sense the total amount of water vapour integrated along the signal path in the troposphere is what is referred to as GNSS meteorology. GNSS has the advantage of all-weather condition, low cost with high temporal and spatial resolution when compared to other classical methods of water vapour measuring that are expensive and/or with low spatial and temporal coverage. When GNSS signals are transmitted from GNSS satellites in space to ground-based GNSS receivers, they experience a tropospheric delay (an error source in GNSS positioning) often represented in GNSS meteorology as the Zenith Total Delay (ZTD). The ZTD is the sum of the Zenith Hydrostatic Delay and the Zenith Wet Delay and it is one of the products of GNSS data processing. The ZTD can be converted to Precipitable Water Vapour (PWV) when surface temperature and pressure values are known at the GNSS site using a conversion factor (?) that is dependent on the weighted mean temperature (Tm) and pressure. This dissertation focuses on the estimation and analysis of water vapour in Nigeria using GNSS observations. The Nigerian Permanent GNSS Network (NIGNET) stations observations and products were retrieved from the infrastructure implemented by Office of the Surveyor General of the Federation (OSGoF). Processing of the data was carried out using online software (GipsyX) for the estimation of ZTD. Fifteen GNSS stations were used in this research and the period 2009 to 2021 was considered. The characteristics of the ZTD over the territory of Nigeria was investigated. The range of ZTD variation in Nigeria for the period used in this research was found to be approximately between 1900mm to 2700mm in the NIGNET stations. The two main seasons in Nigeria were significantly noticed as low peaks were found to be occurring during the dry (winter) season while high peaks were remarkably seen during the rainy (summer) season. The amplitude of the seasonal variation within the period under investigation is between a minimum of 36mm to a maximum of 124mm with the Northern region having higher values than the Southern part. It was discovered ultimately by the results obtained from the analyses, that ZTD variation in both the Northern and Southern regions are influenced by the 4 distinct climates and other local weather conditions including temperature and the trade wind from Sahara Desert and the Atlantic Ocean.A estimativa de vapor de água usando observações do Sistema Global de Navegação por Satélite (GNSS) é uma tecnologia bem estabelecida que tem dado um contributo importante para a realização de previsões meteorológicas, investigação e monitorização climática. O vapor de água na atmosfera está diretamente relacionado com a precipitação que pode levar a eventos extremos (por exemplo, inundações). A área de estudo do uso de dados GNSS para detetar a quantidade total de vapor de água integrado ao longo do caminho do sinal na troposfera é designado de meteorologia GNSS. O GNSS tem como vantagem de poder ser utilizado em todas as condições climáticas, apresentar baixo custo e alta resolução temporal e espacial quando comparado a outros métodos clássicos de medição de vapor de água, normalmente mais caros e/ou com baixa cobertura espacial e temporal. Quando os sinais GNSS são transmitidos dose satélites para recetores terrestres, existe um atraso troposférico (uma fonte de erro no posicionamento GNSS) frequentemente representado na meteorologia GNSS como o Atraso Zenital Total (ZTD em Inglês ). O ZTD é a soma do Atraso Zenital e do Atraso Zenital Húmido e é um dos produtos do processamento de dados GNSS. O ZTD pode ser convertido em PWV quando os valores de temperatura e pressão da superfície são conhecidos no local através de um fator de conversão (?) que depende da temperatura média ponderada (Tm) e da pressão. Esta dissertação tem como objetivo a estimativa e análise de vapor de água na Nigéria usando observações GNSS. As observações e produtos das estações da Rede Permanente GNSS da Nigéria (NIGNET) foram obtidos através da infraestrutura implementada pelo OSGoF. O processamento dos dados foi realizado por meio de software online (GipsyX) para a estimativa do ZTD. Dados de quinze estações GNSS foram utilizadas na análise correspondendo ao período entre 2009 a 2021, para avaliar as características da ZTD sobre o território da Nigéria. A faixa de variação de ZTD na Nigéria para o período considerado foi de aproximadamente 1900mm a 2700mm nas estações NIGNET. As duas principais estações climáticas na Nigéria destacaram-se, com picos baixos que ocorreram durante a estação seca (inverno), e picos altos observados durante a estação chuvosa (verão). A amplitude da variação sazonal no período sob investigação é entre um mínimo de 36mm e um máximo de 124mm com a região norte tendo valores mais elevados que a região sul. Pelos resultados obtidos das análises foi ainda possível verificar que a variação da ZTD nas regiões Norte e Sul são influenciadas pelos 4 climas distintos e outras condições climáticas locais, incluindo temperatura e ventos alísios do deserto do Saara e do Oceano Atlântico.Fernandes, Rui Manuel da SilvaAlmeida, PedroBos, MachieluBibliorumBala, Ipalibo Ateriye2023-02-17T16:31:25Z2022-03-242022-01-312022-03-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13010TID:203227379enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:56:26Zoai:ubibliorum.ubi.pt:10400.6/13010Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:31.910936Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
title |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
spellingShingle |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations Bala, Ipalibo Ateriye Atraso Zenital Total Gnss Meteorologia Gnss Nignet – Rede de Estações Permanentes da Nigéria Vapor de Água Precipitável Domínio/Área Científica::Engenharia e Tecnologia::Sistemas de Informação Geográfica |
title_short |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
title_full |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
title_fullStr |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
title_full_unstemmed |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
title_sort |
Analysis of Precipitable Water Vapour in Nigeria using GNSS Observations |
author |
Bala, Ipalibo Ateriye |
author_facet |
Bala, Ipalibo Ateriye |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fernandes, Rui Manuel da Silva Almeida, Pedro Bos, Machiel uBibliorum |
dc.contributor.author.fl_str_mv |
Bala, Ipalibo Ateriye |
dc.subject.por.fl_str_mv |
Atraso Zenital Total Gnss Meteorologia Gnss Nignet – Rede de Estações Permanentes da Nigéria Vapor de Água Precipitável Domínio/Área Científica::Engenharia e Tecnologia::Sistemas de Informação Geográfica |
topic |
Atraso Zenital Total Gnss Meteorologia Gnss Nignet – Rede de Estações Permanentes da Nigéria Vapor de Água Precipitável Domínio/Área Científica::Engenharia e Tecnologia::Sistemas de Informação Geográfica |
description |
Water Vapour estimation using ground-based Global Navigation Satellite System (GNSS) observations is a well-established technology that contributes to weather forecast, research, and climate monitoring. Water vapour in the atmosphere is directly related with precipitation that may lead to extreme event (e.g., floods). The application of GNSS to sense the total amount of water vapour integrated along the signal path in the troposphere is what is referred to as GNSS meteorology. GNSS has the advantage of all-weather condition, low cost with high temporal and spatial resolution when compared to other classical methods of water vapour measuring that are expensive and/or with low spatial and temporal coverage. When GNSS signals are transmitted from GNSS satellites in space to ground-based GNSS receivers, they experience a tropospheric delay (an error source in GNSS positioning) often represented in GNSS meteorology as the Zenith Total Delay (ZTD). The ZTD is the sum of the Zenith Hydrostatic Delay and the Zenith Wet Delay and it is one of the products of GNSS data processing. The ZTD can be converted to Precipitable Water Vapour (PWV) when surface temperature and pressure values are known at the GNSS site using a conversion factor (?) that is dependent on the weighted mean temperature (Tm) and pressure. This dissertation focuses on the estimation and analysis of water vapour in Nigeria using GNSS observations. The Nigerian Permanent GNSS Network (NIGNET) stations observations and products were retrieved from the infrastructure implemented by Office of the Surveyor General of the Federation (OSGoF). Processing of the data was carried out using online software (GipsyX) for the estimation of ZTD. Fifteen GNSS stations were used in this research and the period 2009 to 2021 was considered. The characteristics of the ZTD over the territory of Nigeria was investigated. The range of ZTD variation in Nigeria for the period used in this research was found to be approximately between 1900mm to 2700mm in the NIGNET stations. The two main seasons in Nigeria were significantly noticed as low peaks were found to be occurring during the dry (winter) season while high peaks were remarkably seen during the rainy (summer) season. The amplitude of the seasonal variation within the period under investigation is between a minimum of 36mm to a maximum of 124mm with the Northern region having higher values than the Southern part. It was discovered ultimately by the results obtained from the analyses, that ZTD variation in both the Northern and Southern regions are influenced by the 4 distinct climates and other local weather conditions including temperature and the trade wind from Sahara Desert and the Atlantic Ocean. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-24 2022-01-31 2022-03-24T00:00:00Z 2023-02-17T16:31:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/13010 TID:203227379 |
url |
http://hdl.handle.net/10400.6/13010 |
identifier_str_mv |
TID:203227379 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136413518659584 |