A note on grothendieck’s standard conjectures of type C+ and D
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/162697 |
Resumo: | 1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UI0297/2014. 1The standard conjecture of type C+ is also usually known as the s∑ign conjecture. If the even Künneth projector is algebraic, then the odd Künneth projector πX− := iπX2i+1 is also algebraic. 2When X is quasi-projective this dg enhancement is unique; see Lunts–Orlov [16, Thm. 2.12]. Publisher Copyright: © 2018 American Mathematical Society. |
id |
RCAP_8cf8f8f2c5dfe918e27ed1c799d5bc9c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/162697 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A note on grothendieck’s standard conjectures of type C+ and DMathematics(all)Applied Mathematics1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UI0297/2014. 1The standard conjecture of type C+ is also usually known as the s∑ign conjecture. If the even Künneth projector is algebraic, then the odd Künneth projector πX− := iπX2i+1 is also algebraic. 2When X is quasi-projective this dg enhancement is unique; see Lunts–Orlov [16, Thm. 2.12]. Publisher Copyright: © 2018 American Mathematical Society.Grothendieck conjectured in the sixties that the even Künneth projector (with respect to a Weil cohomology theory) is algebraic and that the homological equivalence relation on algebraic cycles coincides with the numerical equivalence relation. In this note we extend these celebrated conjectures from smooth projective schemes to the broad setting of smooth proper dg categories. As an application, we prove that Grothendieck’s conjectures are invariant under homological projective duality. This leads to a proof of Grothendieck’s original conjectures in the case of intersections of quadrics and linear sections of determinantal varieties. Along the way, we also prove the case of quadric fibrations and intersections of bilinear divisors.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNTabuada, Gonçalo2024-01-24T15:15:07Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/162697eng0002-9939PURE: 76337476https://doi.org/10.1090/proc/13955info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:38Zoai:run.unl.pt:10362/162697Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:01.406831Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A note on grothendieck’s standard conjectures of type C+ and D |
title |
A note on grothendieck’s standard conjectures of type C+ and D |
spellingShingle |
A note on grothendieck’s standard conjectures of type C+ and D Tabuada, Gonçalo Mathematics(all) Applied Mathematics |
title_short |
A note on grothendieck’s standard conjectures of type C+ and D |
title_full |
A note on grothendieck’s standard conjectures of type C+ and D |
title_fullStr |
A note on grothendieck’s standard conjectures of type C+ and D |
title_full_unstemmed |
A note on grothendieck’s standard conjectures of type C+ and D |
title_sort |
A note on grothendieck’s standard conjectures of type C+ and D |
author |
Tabuada, Gonçalo |
author_facet |
Tabuada, Gonçalo |
author_role |
author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Tabuada, Gonçalo |
dc.subject.por.fl_str_mv |
Mathematics(all) Applied Mathematics |
topic |
Mathematics(all) Applied Mathematics |
description |
1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UI0297/2014. 1The standard conjecture of type C+ is also usually known as the s∑ign conjecture. If the even Künneth projector is algebraic, then the odd Künneth projector πX− := iπX2i+1 is also algebraic. 2When X is quasi-projective this dg enhancement is unique; see Lunts–Orlov [16, Thm. 2.12]. Publisher Copyright: © 2018 American Mathematical Society. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2024-01-24T15:15:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/162697 |
url |
http://hdl.handle.net/10362/162697 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0002-9939 PURE: 76337476 https://doi.org/10.1090/proc/13955 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138170879606784 |