Airplane wing skeleton structural efficiency optimisation

Detalhes bibliográficos
Autor(a) principal: Pereira, André das Neves
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/41042
Resumo: One way to improve the energy efficiency of an aircraft is by optimising its structural efficiency, i.e. optimising the structure so that, while maintaining the necessary structural strength, the structural weight of the aircraft can be reduced, thus increasing its payload capacity, and/or range. The current work aimed to develop a framework that makes it possible to conduct extensive parametric optimisation studies on an airplane wing’s skeleton, keeping the wing loft constant. A global finite element model generator (WinG3N) transformed the task of creating a wing finite element model, reducing the time required from about one week to a few seconds after inputing the desired geometry. This tool enables the assessment of the impact of each relevant design parameter on the wing’s structural efficiency and ultimately facilitates the creation of a wing model featuring significant structural efficiency gains. The assessed variables included rib spacing, stringer spacing, stringer cross section (inertia), panel stiffening ratio, the chordwise positioning of the wing spars as a percentage of chord, and also the effect of the wing’s external geometry parameters such as taper and sweep. Studies were also carried out on modelling methodologies, involving mesh size and loading approach, including linear static, linear buckling and modal analyses. After several tries, a suitable structural efficiency figure of merit has been adopted. Results have shown that the parameters with more impact on the wing structural efficiency are stringer spacing, panel stiffening ratio, and stringer cross section. Finally, the structural efficiency has been enhanced in 116% with respect to the baseline wing skeleton by optimising the aforementioned variables, clearly showing the potential of the devised parametric optimisation approach in the wing skeleton design.
id RCAP_8d138c314cc8989d8fd370b1b69be43a
oai_identifier_str oai:ria.ua.pt:10773/41042
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Airplane wing skeleton structural efficiency optimisationAeronautical engineeringFinite element analysisOptimisationParametric studiesStructural analysisOne way to improve the energy efficiency of an aircraft is by optimising its structural efficiency, i.e. optimising the structure so that, while maintaining the necessary structural strength, the structural weight of the aircraft can be reduced, thus increasing its payload capacity, and/or range. The current work aimed to develop a framework that makes it possible to conduct extensive parametric optimisation studies on an airplane wing’s skeleton, keeping the wing loft constant. A global finite element model generator (WinG3N) transformed the task of creating a wing finite element model, reducing the time required from about one week to a few seconds after inputing the desired geometry. This tool enables the assessment of the impact of each relevant design parameter on the wing’s structural efficiency and ultimately facilitates the creation of a wing model featuring significant structural efficiency gains. The assessed variables included rib spacing, stringer spacing, stringer cross section (inertia), panel stiffening ratio, the chordwise positioning of the wing spars as a percentage of chord, and also the effect of the wing’s external geometry parameters such as taper and sweep. Studies were also carried out on modelling methodologies, involving mesh size and loading approach, including linear static, linear buckling and modal analyses. After several tries, a suitable structural efficiency figure of merit has been adopted. Results have shown that the parameters with more impact on the wing structural efficiency are stringer spacing, panel stiffening ratio, and stringer cross section. Finally, the structural efficiency has been enhanced in 116% with respect to the baseline wing skeleton by optimising the aforementioned variables, clearly showing the potential of the devised parametric optimisation approach in the wing skeleton design.Uma forma de melhorar a eficiência energética de uma aeronave é através da otimização da sua eficiência estrutural, ou seja, otimizar a estrutura de modo a que, mantendo a resistência estrutural necessária, o peso estrutural da aeronave possa ser reduzido, aumentando assim a sua capacidade de carga paga e/ou aumentando o alcance. O presente trabalho teve como objetivo o desenvolvimento de um processo automatizado que permita realizar abrangentes estudos de otimização paramétrica do esqueleto de uma asa de avião, mantendo o formato exterior da asa constante. Um gerador de modelos de elementos finitos globais (WinG3N) transformou a tarefa de criação de modelos de elementos finitos da asa, reduzindo o tempo necessário de cerca de uma semana para alguns segundos após a introdução da geometria desejada. Esta ferramenta permite a avaliação do impacto de cada parâmetro de projeto relevante na eficiência estrutural da asa e, por conseguinte, facilita a criação de um modelo de asa com ganhos significativos de eficiência estrutural. As variáveis avaliadas incluíram o espaçamento entre nervuras, o espaçamento entre stringers, a secção transversal dos stringers (inércia), o rácio entre a área da secção dos painéis e dos stringers, o posicionamento transversal das longarinas da asa em percentagem da corda e também o efeito dos parâmetros da geometria externa da asa, como o afilamento e a flecha. Foram também efectuados estudos sobre metodologias de modelação, envolvendo o refinamento da malha e a aplicação de cargas, incluindo análises estáticas lineares, de instabilidade linear e modais. Após várias tentativas, foi adotada uma figura de mérito adequada para a eficiência estrutural. Os resultados mostraram que os parâmetros com maior impacto na eficiência estrutural da asa são o espaçamento entre stringers, o rácio entre a área da secção dos painéis e dos stringers e a secção transversal dos stringers. Por fim, a eficiência estrutural foi melhorada em 116% em relação ao esqueleto de base da asa através da otimização das variáveis supramencionadas, mostrando claramente o potencial da concebida abordagem de otimização paramétrica no projeto do esqueleto de uma asa.2024-03-12T14:35:08Z2023-07-04T00:00:00Z2023-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41042engPereira, André das Nevesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:48:16Zoai:ria.ua.pt:10773/41042Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:09.022548Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Airplane wing skeleton structural efficiency optimisation
title Airplane wing skeleton structural efficiency optimisation
spellingShingle Airplane wing skeleton structural efficiency optimisation
Pereira, André das Neves
Aeronautical engineering
Finite element analysis
Optimisation
Parametric studies
Structural analysis
title_short Airplane wing skeleton structural efficiency optimisation
title_full Airplane wing skeleton structural efficiency optimisation
title_fullStr Airplane wing skeleton structural efficiency optimisation
title_full_unstemmed Airplane wing skeleton structural efficiency optimisation
title_sort Airplane wing skeleton structural efficiency optimisation
author Pereira, André das Neves
author_facet Pereira, André das Neves
author_role author
dc.contributor.author.fl_str_mv Pereira, André das Neves
dc.subject.por.fl_str_mv Aeronautical engineering
Finite element analysis
Optimisation
Parametric studies
Structural analysis
topic Aeronautical engineering
Finite element analysis
Optimisation
Parametric studies
Structural analysis
description One way to improve the energy efficiency of an aircraft is by optimising its structural efficiency, i.e. optimising the structure so that, while maintaining the necessary structural strength, the structural weight of the aircraft can be reduced, thus increasing its payload capacity, and/or range. The current work aimed to develop a framework that makes it possible to conduct extensive parametric optimisation studies on an airplane wing’s skeleton, keeping the wing loft constant. A global finite element model generator (WinG3N) transformed the task of creating a wing finite element model, reducing the time required from about one week to a few seconds after inputing the desired geometry. This tool enables the assessment of the impact of each relevant design parameter on the wing’s structural efficiency and ultimately facilitates the creation of a wing model featuring significant structural efficiency gains. The assessed variables included rib spacing, stringer spacing, stringer cross section (inertia), panel stiffening ratio, the chordwise positioning of the wing spars as a percentage of chord, and also the effect of the wing’s external geometry parameters such as taper and sweep. Studies were also carried out on modelling methodologies, involving mesh size and loading approach, including linear static, linear buckling and modal analyses. After several tries, a suitable structural efficiency figure of merit has been adopted. Results have shown that the parameters with more impact on the wing structural efficiency are stringer spacing, panel stiffening ratio, and stringer cross section. Finally, the structural efficiency has been enhanced in 116% with respect to the baseline wing skeleton by optimising the aforementioned variables, clearly showing the potential of the devised parametric optimisation approach in the wing skeleton design.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-04T00:00:00Z
2023-07-04
2024-03-12T14:35:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41042
url http://hdl.handle.net/10773/41042
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138193900044288