Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/48887 |
Resumo: | In the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results. |
id |
RCAP_8d4180e49dff2676851083b79567f9ae |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/48887 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Artificial Intelligence in Invoice Recognition: a Systematic Literature ReviewInvoiceInvoice RecognitionArtificial IntelligenceAlgorithmsComputer VisionData ExtractionIn the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results.Ribeiro, António Rui TrigoRepositório ComumKukharska, Oleksandra2024-01-12T16:22:33Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/48887TID:203464273enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-18T02:15:53Zoai:comum.rcaap.pt:10400.26/48887Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:54.113219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
title |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
spellingShingle |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review Kukharska, Oleksandra Invoice Invoice Recognition Artificial Intelligence Algorithms Computer Vision Data Extraction |
title_short |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
title_full |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
title_fullStr |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
title_full_unstemmed |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
title_sort |
Artificial Intelligence in Invoice Recognition: a Systematic Literature Review |
author |
Kukharska, Oleksandra |
author_facet |
Kukharska, Oleksandra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ribeiro, António Rui Trigo Repositório Comum |
dc.contributor.author.fl_str_mv |
Kukharska, Oleksandra |
dc.subject.por.fl_str_mv |
Invoice Invoice Recognition Artificial Intelligence Algorithms Computer Vision Data Extraction |
topic |
Invoice Invoice Recognition Artificial Intelligence Algorithms Computer Vision Data Extraction |
description |
In the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2024-01-12T16:22:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/48887 TID:203464273 |
url |
http://hdl.handle.net/10400.26/48887 |
identifier_str_mv |
TID:203464273 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137009514577920 |