Artificial Intelligence in Invoice Recognition: a Systematic Literature Review

Detalhes bibliográficos
Autor(a) principal: Kukharska, Oleksandra
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/48887
Resumo: In the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results.
id RCAP_8d4180e49dff2676851083b79567f9ae
oai_identifier_str oai:comum.rcaap.pt:10400.26/48887
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Artificial Intelligence in Invoice Recognition: a Systematic Literature ReviewInvoiceInvoice RecognitionArtificial IntelligenceAlgorithmsComputer VisionData ExtractionIn the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results.Ribeiro, António Rui TrigoRepositório ComumKukharska, Oleksandra2024-01-12T16:22:33Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/48887TID:203464273enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-18T02:15:53Zoai:comum.rcaap.pt:10400.26/48887Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:54.113219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
title Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
spellingShingle Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
Kukharska, Oleksandra
Invoice
Invoice Recognition
Artificial Intelligence
Algorithms
Computer Vision
Data Extraction
title_short Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
title_full Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
title_fullStr Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
title_full_unstemmed Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
title_sort Artificial Intelligence in Invoice Recognition: a Systematic Literature Review
author Kukharska, Oleksandra
author_facet Kukharska, Oleksandra
author_role author
dc.contributor.none.fl_str_mv Ribeiro, António Rui Trigo
Repositório Comum
dc.contributor.author.fl_str_mv Kukharska, Oleksandra
dc.subject.por.fl_str_mv Invoice
Invoice Recognition
Artificial Intelligence
Algorithms
Computer Vision
Data Extraction
topic Invoice
Invoice Recognition
Artificial Intelligence
Algorithms
Computer Vision
Data Extraction
description In the era marked by a flourishing economy and rapid advancements in information technology, the proliferation of invoice data has accentuated the urgent need for automated invoice recognition. Traditional manual methods, long relied upon for this task, have proven to be inefficient, error-prone, and incapable of coping with the rising volume of invoices. This research endeavours to addresses the imperative of automating invoice recognition by exploring, assessing, and advancing cutting-edge algorithms, techniques, and methods within the domain of Artificial Intelligence (AI). This research conducts a comprehensive Systematic Literature Review (SLR) to investigate Computer Vision (CV) approaches, encompassing image preprocessing, Layout Analysis (LA), Optical Character Recognition (OCR), and Information Extraction (IE). The objective is to provide valuable insights into these fundamental components of invoice recognition, emphasizing their significance in achieving accuracy and efficiency. This exploration aims to contribute to the development of more effective automated systems for extracting information from invoices, addressing the challenges posed by diverse formats and content. The results indicate that in LA, the combination of Mask Region-based Convolutional Neural Networks (M-RCNN) and Feature Pyramid Network (FPN) achieves goods results. In OCR, algorithms like Convolutional Recurrent Neural Network (CRNN), You Only Look Once version 4 (YOLOv4) and models inspired by M-RCNN and Faster Region-based Convolutional Neural Network (F-RCNN) with ResNetXt-101 as the backbone demonstrate remarkable performance. When it comes to IE, algorithms inspired by F-RCNN and Region Proposal Network (RPN), Grid Convolutional Neural Network (G-CNN) and Layer Graph Convolutional Networks (LGCN), and Gated Graph Convolutional Network (GatedGCN) consistently deliver the best results.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-12T16:22:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/48887
TID:203464273
url http://hdl.handle.net/10400.26/48887
identifier_str_mv TID:203464273
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137009514577920