An overview of kriging and cokriging predictors for functional random fields
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86362 |
Resumo: | This article presents an overview of methodologies for spatial prediction of functional data, focusing on both stationary and non-stationary conditions. A significant aspect of the functional random fields analysis is evaluating stationarity to characterize the stability of statistical properties across the spatial domain. The article explores methodologies from the literature, providing insights into the challenges and advancements in functional geostatistics. This work is relevant from theoreti cal and practical perspectives, offering an integrated view of methodologies tailored to the specific stationarity conditions of the functional processes under study. The practical implications of our work span across fields like environmental monitoring, geosciences, and biomedical research. This overview encourages advancements in functional geostatistics, paving the way for the development of innovative techniques for analyzing and predicting spatially correlated functional data. It lays the groundwork for future research, enhancing our understanding of spatial statistics and its applications. |
id |
RCAP_8d553684e0d9c626a96d787f61039ebb |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86362 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An overview of kriging and cokriging predictors for functional random fieldsFunctional dataGeostatisticsKrigingNon-stationaritySpatial predictionStationarityCiências Naturais::MatemáticasEducação de qualidadeThis article presents an overview of methodologies for spatial prediction of functional data, focusing on both stationary and non-stationary conditions. A significant aspect of the functional random fields analysis is evaluating stationarity to characterize the stability of statistical properties across the spatial domain. The article explores methodologies from the literature, providing insights into the challenges and advancements in functional geostatistics. This work is relevant from theoreti cal and practical perspectives, offering an integrated view of methodologies tailored to the specific stationarity conditions of the functional processes under study. The practical implications of our work span across fields like environmental monitoring, geosciences, and biomedical research. This overview encourages advancements in functional geostatistics, paving the way for the development of innovative techniques for analyzing and predicting spatially correlated functional data. It lays the groundwork for future research, enhancing our understanding of spatial statistics and its applications.This research was partially supported by FONDECYT, grant number 1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho—within projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoGiraldo, RamónLeiva, VíctorCastro, Cecília2023-08-072023-08-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86362eng2227-739010.3390/math111534253425https://www.mdpi.com/2227-7390/11/15/3425info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-16T01:16:46Zoai:repositorium.sdum.uminho.pt:1822/86362Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:29:20.325021Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An overview of kriging and cokriging predictors for functional random fields |
title |
An overview of kriging and cokriging predictors for functional random fields |
spellingShingle |
An overview of kriging and cokriging predictors for functional random fields Giraldo, Ramón Functional data Geostatistics Kriging Non-stationarity Spatial prediction Stationarity Ciências Naturais::Matemáticas Educação de qualidade |
title_short |
An overview of kriging and cokriging predictors for functional random fields |
title_full |
An overview of kriging and cokriging predictors for functional random fields |
title_fullStr |
An overview of kriging and cokriging predictors for functional random fields |
title_full_unstemmed |
An overview of kriging and cokriging predictors for functional random fields |
title_sort |
An overview of kriging and cokriging predictors for functional random fields |
author |
Giraldo, Ramón |
author_facet |
Giraldo, Ramón Leiva, Víctor Castro, Cecília |
author_role |
author |
author2 |
Leiva, Víctor Castro, Cecília |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Giraldo, Ramón Leiva, Víctor Castro, Cecília |
dc.subject.por.fl_str_mv |
Functional data Geostatistics Kriging Non-stationarity Spatial prediction Stationarity Ciências Naturais::Matemáticas Educação de qualidade |
topic |
Functional data Geostatistics Kriging Non-stationarity Spatial prediction Stationarity Ciências Naturais::Matemáticas Educação de qualidade |
description |
This article presents an overview of methodologies for spatial prediction of functional data, focusing on both stationary and non-stationary conditions. A significant aspect of the functional random fields analysis is evaluating stationarity to characterize the stability of statistical properties across the spatial domain. The article explores methodologies from the literature, providing insights into the challenges and advancements in functional geostatistics. This work is relevant from theoreti cal and practical perspectives, offering an integrated view of methodologies tailored to the specific stationarity conditions of the functional processes under study. The practical implications of our work span across fields like environmental monitoring, geosciences, and biomedical research. This overview encourages advancements in functional geostatistics, paving the way for the development of innovative techniques for analyzing and predicting spatially correlated functional data. It lays the groundwork for future research, enhancing our understanding of spatial statistics and its applications. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-07 2023-08-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86362 |
url |
https://hdl.handle.net/1822/86362 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-7390 10.3390/math11153425 3425 https://www.mdpi.com/2227-7390/11/15/3425 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133560997675008 |