Internet of Things Software Modules Marketplace

Detalhes bibliográficos
Autor(a) principal: João Pedro Furriel de Moura Pinheiro
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/128543
Resumo: The advent of the Cyber-Physical Systems (CPS), a physical system representation through a vir-tual model, usually used to control a system or a process comes from the growing democratizationof the computational power. Nowadays, virtually anything can be equipped with some kind ofembedded processor to automate tasks, generate or consume some kind of data. In addition, thecontinuous development and improvement of the communication networks has helped leveragethe concept of the Internet of Things (IoT) in which things are now, themselves, connected to theInternet, exchanging data with each other and with people.In the industrial sector, CPS, also called Cyber-Physical Production Systems (CPPS) and theIoT are the main technological advances that lead to the industry fourth revolution, common des-ignated as Industry 4.0 in which the factory floor is no longer a centralized model where all thecomputation is done centrally but is now a decentralized model where industrial equipment haveembedded devices to control, automate tasks and react in a dynamic and intelligent manner to thesensed physical environment.Thereby, one of the keywords around the CPPSs is software. Software is no longer centralizedand is now distributed through several devices that comprises the system. This new approachcomes with significant changes and one of them is the reuse and distribution of the software. Itis not viable to manual deploy and install software in hundreds or thousands of devices and nothaving a way of reusing the existing software. If, on the one hand, the desire is to develop a moreintelligent process control system, on the other, flexibility, adaptability and simplicity are alsoconvenient capabilities or else intelligent manufacturing process control systems are built upon alot of resources debt. Hence, the solution is to build standards, tools and frameworks that allowthe reuse of software and its rapid deployment in the distributed devices.One option, in the Industry 4.0 field, to cope with the software reuse issue in this kind of sys-tems is the encapsulation of software in functional blocks, the Function Blocks (FBs) and their usein the function block programming paradigm, described in IEC 61499 standard. The functionalityis abstracted away in the FBs and can be reused by just deploying the them to the devices. Thisway, it is easier to manage a network by dragging and dropping these blocks, building complexapplications centrally and deploy everything to the distributed embedded devices. However, theimplementation of this standard to address the aforementioned problem brings, itself, other neces-sities such as managing the FBs, monitoring them and their previous download by the embeddeddevices.This dissertation main goal is the development of a marketplace to manage and monitor of FBs in a IEC 61499 network envisioning the filling of the previous mentioned gaps in this kindof networks. The marketplace, integrated in a IEC 61499 global solution will not only enable thedistribution of FBs among the embedded devices in a IEC 61499 compliant CPPS but also manageFBs versions, functioning as a central repository of software components, having also monitoringand statistical features, allowing the detection of flaws or malfunctions and collect statistical datai iiabout FBs usage.
id RCAP_8d67ba1db55ae548ff1ecda43501b9c7
oai_identifier_str oai:repositorio-aberto.up.pt:10216/128543
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Internet of Things Software Modules MarketplaceEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringThe advent of the Cyber-Physical Systems (CPS), a physical system representation through a vir-tual model, usually used to control a system or a process comes from the growing democratizationof the computational power. Nowadays, virtually anything can be equipped with some kind ofembedded processor to automate tasks, generate or consume some kind of data. In addition, thecontinuous development and improvement of the communication networks has helped leveragethe concept of the Internet of Things (IoT) in which things are now, themselves, connected to theInternet, exchanging data with each other and with people.In the industrial sector, CPS, also called Cyber-Physical Production Systems (CPPS) and theIoT are the main technological advances that lead to the industry fourth revolution, common des-ignated as Industry 4.0 in which the factory floor is no longer a centralized model where all thecomputation is done centrally but is now a decentralized model where industrial equipment haveembedded devices to control, automate tasks and react in a dynamic and intelligent manner to thesensed physical environment.Thereby, one of the keywords around the CPPSs is software. Software is no longer centralizedand is now distributed through several devices that comprises the system. This new approachcomes with significant changes and one of them is the reuse and distribution of the software. Itis not viable to manual deploy and install software in hundreds or thousands of devices and nothaving a way of reusing the existing software. If, on the one hand, the desire is to develop a moreintelligent process control system, on the other, flexibility, adaptability and simplicity are alsoconvenient capabilities or else intelligent manufacturing process control systems are built upon alot of resources debt. Hence, the solution is to build standards, tools and frameworks that allowthe reuse of software and its rapid deployment in the distributed devices.One option, in the Industry 4.0 field, to cope with the software reuse issue in this kind of sys-tems is the encapsulation of software in functional blocks, the Function Blocks (FBs) and their usein the function block programming paradigm, described in IEC 61499 standard. The functionalityis abstracted away in the FBs and can be reused by just deploying the them to the devices. Thisway, it is easier to manage a network by dragging and dropping these blocks, building complexapplications centrally and deploy everything to the distributed embedded devices. However, theimplementation of this standard to address the aforementioned problem brings, itself, other neces-sities such as managing the FBs, monitoring them and their previous download by the embeddeddevices.This dissertation main goal is the development of a marketplace to manage and monitor of FBs in a IEC 61499 network envisioning the filling of the previous mentioned gaps in this kindof networks. The marketplace, integrated in a IEC 61499 global solution will not only enable thedistribution of FBs among the embedded devices in a IEC 61499 compliant CPPS but also manageFBs versions, functioning as a central repository of software components, having also monitoringand statistical features, allowing the detection of flaws or malfunctions and collect statistical datai iiabout FBs usage.2020-07-212020-07-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/128543TID:202591662engJoão Pedro Furriel de Moura Pinheiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:23:44Zoai:repositorio-aberto.up.pt:10216/128543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:39:39.731036Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Internet of Things Software Modules Marketplace
title Internet of Things Software Modules Marketplace
spellingShingle Internet of Things Software Modules Marketplace
João Pedro Furriel de Moura Pinheiro
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Internet of Things Software Modules Marketplace
title_full Internet of Things Software Modules Marketplace
title_fullStr Internet of Things Software Modules Marketplace
title_full_unstemmed Internet of Things Software Modules Marketplace
title_sort Internet of Things Software Modules Marketplace
author João Pedro Furriel de Moura Pinheiro
author_facet João Pedro Furriel de Moura Pinheiro
author_role author
dc.contributor.author.fl_str_mv João Pedro Furriel de Moura Pinheiro
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description The advent of the Cyber-Physical Systems (CPS), a physical system representation through a vir-tual model, usually used to control a system or a process comes from the growing democratizationof the computational power. Nowadays, virtually anything can be equipped with some kind ofembedded processor to automate tasks, generate or consume some kind of data. In addition, thecontinuous development and improvement of the communication networks has helped leveragethe concept of the Internet of Things (IoT) in which things are now, themselves, connected to theInternet, exchanging data with each other and with people.In the industrial sector, CPS, also called Cyber-Physical Production Systems (CPPS) and theIoT are the main technological advances that lead to the industry fourth revolution, common des-ignated as Industry 4.0 in which the factory floor is no longer a centralized model where all thecomputation is done centrally but is now a decentralized model where industrial equipment haveembedded devices to control, automate tasks and react in a dynamic and intelligent manner to thesensed physical environment.Thereby, one of the keywords around the CPPSs is software. Software is no longer centralizedand is now distributed through several devices that comprises the system. This new approachcomes with significant changes and one of them is the reuse and distribution of the software. Itis not viable to manual deploy and install software in hundreds or thousands of devices and nothaving a way of reusing the existing software. If, on the one hand, the desire is to develop a moreintelligent process control system, on the other, flexibility, adaptability and simplicity are alsoconvenient capabilities or else intelligent manufacturing process control systems are built upon alot of resources debt. Hence, the solution is to build standards, tools and frameworks that allowthe reuse of software and its rapid deployment in the distributed devices.One option, in the Industry 4.0 field, to cope with the software reuse issue in this kind of sys-tems is the encapsulation of software in functional blocks, the Function Blocks (FBs) and their usein the function block programming paradigm, described in IEC 61499 standard. The functionalityis abstracted away in the FBs and can be reused by just deploying the them to the devices. Thisway, it is easier to manage a network by dragging and dropping these blocks, building complexapplications centrally and deploy everything to the distributed embedded devices. However, theimplementation of this standard to address the aforementioned problem brings, itself, other neces-sities such as managing the FBs, monitoring them and their previous download by the embeddeddevices.This dissertation main goal is the development of a marketplace to manage and monitor of FBs in a IEC 61499 network envisioning the filling of the previous mentioned gaps in this kindof networks. The marketplace, integrated in a IEC 61499 global solution will not only enable thedistribution of FBs among the embedded devices in a IEC 61499 compliant CPPS but also manageFBs versions, functioning as a central repository of software components, having also monitoringand statistical features, allowing the detection of flaws or malfunctions and collect statistical datai iiabout FBs usage.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-21
2020-07-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/128543
TID:202591662
url https://hdl.handle.net/10216/128543
identifier_str_mv TID:202591662
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135710393925632