Structural similarity index (SSIM) revisited
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/127077 |
Resumo: | Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2022). Structural similarity index (SSIM) revisited: A data-driven approach. Expert Systems with Applications, 189, 1-19. [116087]. [Advanced online publication on 27 October 2021]. https://doi.org/10.1016/j.eswa.2021.116087--------------Funding Information: This work was supported by national funds through the FCT (Funda??o para a Ci?ncia e a Tecnologia), Portugal by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency, Slovenia (research core funding no. P5-0410). |
id |
RCAP_8d81663abb96d3c4652ce970dd5b2d93 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/127077 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Structural similarity index (SSIM) revisitedA data-driven approachImage quality assessment measuresStructural similarityEvolutionary computationScale selectionImage processingEngineering(all)Computer Science ApplicationsArtificial IntelligenceBakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2022). Structural similarity index (SSIM) revisited: A data-driven approach. Expert Systems with Applications, 189, 1-19. [116087]. [Advanced online publication on 27 October 2021]. https://doi.org/10.1016/j.eswa.2021.116087--------------Funding Information: This work was supported by national funds through the FCT (Funda??o para a Ci?ncia e a Tecnologia), Portugal by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency, Slovenia (research core funding no. P5-0410).Several contemporaneous image processing and computer vision systems rely upon the full-reference image quality assessment (IQA) measures. The single-scale structural similarity index (SS-SSIM) is one of the most popular measures, and it owes its success to the mathematical simplicity, low computational complexity, and implicit incorporation of Human Visual System’s (HVS) characteristics. In this paper, we revise the original parameters of SSIM and its multi-scale counterpart (MS-SSIM) to increase their correlation with subjective evaluation. More specifically, we exploit the evolutionary computation and the swarm intelligence methods on five popular IQA databases, two of which are dedicated distance-changed databases, to determine the best combination of parameters efficiently. Simultaneously, we explore the effect of different scale selection approaches in the context of SS-SSIM. The experimental results show that with a proper fine-tuning (1) the performance of SS-SSIM and MS-SSIM can be improved, in average terms, by 8% and by 3%, respectively, (2) the SS-SSIM after the so-called standard scale selection achieves similar performance as if applying computationally more expensive state-of-the-art scale selection methods or MS-SSIM; moreover, (3) there is evidence that the parameters learned on a given database can be successfully transferred to other (previously unseen) databases; finally, (4) we propose a new set of reference parameters for SSIM’s variants and provide their interpretation.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBakurov, IllyaBuzzelli, MarcoSchettini, RaimondoCastelli, MauroVanneschi, Leonardo2024-01-24T01:31:43Z2022-03-012022-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19application/pdfhttp://hdl.handle.net/10362/127077eng0957-4174PURE: 34615726https://doi.org/10.1016/j.eswa.2021.116087info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:07:11Zoai:run.unl.pt:10362/127077Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:01.915783Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Structural similarity index (SSIM) revisited A data-driven approach |
title |
Structural similarity index (SSIM) revisited |
spellingShingle |
Structural similarity index (SSIM) revisited Bakurov, Illya Image quality assessment measures Structural similarity Evolutionary computation Scale selection Image processing Engineering(all) Computer Science Applications Artificial Intelligence |
title_short |
Structural similarity index (SSIM) revisited |
title_full |
Structural similarity index (SSIM) revisited |
title_fullStr |
Structural similarity index (SSIM) revisited |
title_full_unstemmed |
Structural similarity index (SSIM) revisited |
title_sort |
Structural similarity index (SSIM) revisited |
author |
Bakurov, Illya |
author_facet |
Bakurov, Illya Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
author_role |
author |
author2 |
Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Bakurov, Illya Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Image quality assessment measures Structural similarity Evolutionary computation Scale selection Image processing Engineering(all) Computer Science Applications Artificial Intelligence |
topic |
Image quality assessment measures Structural similarity Evolutionary computation Scale selection Image processing Engineering(all) Computer Science Applications Artificial Intelligence |
description |
Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2022). Structural similarity index (SSIM) revisited: A data-driven approach. Expert Systems with Applications, 189, 1-19. [116087]. [Advanced online publication on 27 October 2021]. https://doi.org/10.1016/j.eswa.2021.116087--------------Funding Information: This work was supported by national funds through the FCT (Funda??o para a Ci?ncia e a Tecnologia), Portugal by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency, Slovenia (research core funding no. P5-0410). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-01 2022-03-01T00:00:00Z 2024-01-24T01:31:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/127077 |
url |
http://hdl.handle.net/10362/127077 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0957-4174 PURE: 34615726 https://doi.org/10.1016/j.eswa.2021.116087 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
19 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138064496328704 |