New venues for IoT supported on visible light communications

Detalhes bibliográficos
Autor(a) principal: Pandeirada, João Duarte Oliveira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29795
Resumo: The IoT consists in giving network connectivity to physical devices and everyday objects by embedding electronics inside them so they can communicate with each other over an established network (commonly the internet). The range of fields in which IoT can be useful is enormous and this results in an exponential increase in the number of devices deployed worldwide. This everincreasing trend in the number of devices that future IoT systems may employ is accompanied by a reduction of their size, volume and cost. Future IoT devices will have a much smaller footprint, lower power consumption, longer operation lifespan and will be deployed in even larger numbers than nowadays. This defines a new and exciting field of research on communications, the Internet of Nano-Things. Nano-scale devices impose a new set of challenges like power constraints, limited computational resources and low complex communication capabilities. Inspired in the efficient way that the brain processes and transports information, this work proposes a novel communication architecture to be used inside nanodevices in order to be compliant with their size and power limitations. The architecture consists in a neural network with relaying and pattern recognition capabilities. The network learns the desired features using STDP, a power efficient and biologically plausible learning method. Considering the previous architecture, devices are assumed to establish a communication network, where each device has the functionality of sensing and relaying information. The nanonetwork should be able to transport information between two endpoints while maintaining the signal integrity. Concerning the communication scheme, optical wireless communications are a promising candidate due to the possibility of very small and sensitive frontend devices .The results section shows the simulation of nanonetworks and evaluates their performance for different topologies and parameters.
id RCAP_8dafafa38c1e0f2f351e7d83e9a062cf
oai_identifier_str oai:ria.ua.pt:10773/29795
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New venues for IoT supported on visible light communicationsNanotechnologyNanonetworksMolecular communicationssnnstdpRelayThe IoT consists in giving network connectivity to physical devices and everyday objects by embedding electronics inside them so they can communicate with each other over an established network (commonly the internet). The range of fields in which IoT can be useful is enormous and this results in an exponential increase in the number of devices deployed worldwide. This everincreasing trend in the number of devices that future IoT systems may employ is accompanied by a reduction of their size, volume and cost. Future IoT devices will have a much smaller footprint, lower power consumption, longer operation lifespan and will be deployed in even larger numbers than nowadays. This defines a new and exciting field of research on communications, the Internet of Nano-Things. Nano-scale devices impose a new set of challenges like power constraints, limited computational resources and low complex communication capabilities. Inspired in the efficient way that the brain processes and transports information, this work proposes a novel communication architecture to be used inside nanodevices in order to be compliant with their size and power limitations. The architecture consists in a neural network with relaying and pattern recognition capabilities. The network learns the desired features using STDP, a power efficient and biologically plausible learning method. Considering the previous architecture, devices are assumed to establish a communication network, where each device has the functionality of sensing and relaying information. The nanonetwork should be able to transport information between two endpoints while maintaining the signal integrity. Concerning the communication scheme, optical wireless communications are a promising candidate due to the possibility of very small and sensitive frontend devices .The results section shows the simulation of nanonetworks and evaluates their performance for different topologies and parameters.O IoT consiste em providenciar conexão em rede a dispositivos físicos e objetos do quotidiano, embutindo-lhes sistemas electrónicos de modo a que possam comunicar uns com os outros através de uma rede estabelecida (tipicamente a internet). O leque de campos em que o IoT pode ser útil é enorme e isto resulta num aumento exponential do número de dispositivos implantados mundialmente. Esta tendência crescente no número de dispositivos que os futuros sistemas IoT irão usar é acompanhada por uma redução do seu tamanho, volume e preço. Os futuros dispositivos terão um tamanho muito menor, menor consumo energético, maior vida útil e serão implantados em números ainda maiores que atualmente. Isto define um novo e excitante ramo de investigação em comunicações, a Internet das Nano-Coisas. Dispositivos à nano escala impõem um novo conjunto de desafios como limites energéticos, recursos computacionais limitados e capacidades de comunicação de baixa complexidade. Inspirado na maneira eficiente como o cerébro processa e transporta informação, este trabalho propõe uma nova arquitectura de comunicações para ser usada em nanodispositivos que seja coerente com o seu tamanho e limitação energética. A arquitetura consiste numa rede neural com capacidade de retransmissão e reconhecimento de padrões. A rede aprende as características pretendidas através de STDP, um método de aprendizagem energéticamente eficiente e biológicamente plausível. Considerando a arquitectura anterior, é assumido que os dispositivos estabelecem uma rede de comunicação, onde cada um tem a funcionalidade de sensorizar e retransmitir a informação. A nano rede deve ser capaz de transportar a informação entre dois pontos mantendo a integridade do sinal. No que concerne o esquema de comunicação, comunicações óticas sem fios são um candidato promissor graças à possibilidade de criar interfaces de comunicação bastante pequenas e sensíveis. A secção de resultados mostra a simulação de nano redes e avalía a sua performance para diferentes topologías e parâmetros.2019-122019-12-01T00:00:00Z2021-01-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29795engPandeirada, João Duarte Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:38Zoai:ria.ua.pt:10773/29795Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:02.312641Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New venues for IoT supported on visible light communications
title New venues for IoT supported on visible light communications
spellingShingle New venues for IoT supported on visible light communications
Pandeirada, João Duarte Oliveira
Nanotechnology
Nanonetworks
Molecular communications
snn
stdp
Relay
title_short New venues for IoT supported on visible light communications
title_full New venues for IoT supported on visible light communications
title_fullStr New venues for IoT supported on visible light communications
title_full_unstemmed New venues for IoT supported on visible light communications
title_sort New venues for IoT supported on visible light communications
author Pandeirada, João Duarte Oliveira
author_facet Pandeirada, João Duarte Oliveira
author_role author
dc.contributor.author.fl_str_mv Pandeirada, João Duarte Oliveira
dc.subject.por.fl_str_mv Nanotechnology
Nanonetworks
Molecular communications
snn
stdp
Relay
topic Nanotechnology
Nanonetworks
Molecular communications
snn
stdp
Relay
description The IoT consists in giving network connectivity to physical devices and everyday objects by embedding electronics inside them so they can communicate with each other over an established network (commonly the internet). The range of fields in which IoT can be useful is enormous and this results in an exponential increase in the number of devices deployed worldwide. This everincreasing trend in the number of devices that future IoT systems may employ is accompanied by a reduction of their size, volume and cost. Future IoT devices will have a much smaller footprint, lower power consumption, longer operation lifespan and will be deployed in even larger numbers than nowadays. This defines a new and exciting field of research on communications, the Internet of Nano-Things. Nano-scale devices impose a new set of challenges like power constraints, limited computational resources and low complex communication capabilities. Inspired in the efficient way that the brain processes and transports information, this work proposes a novel communication architecture to be used inside nanodevices in order to be compliant with their size and power limitations. The architecture consists in a neural network with relaying and pattern recognition capabilities. The network learns the desired features using STDP, a power efficient and biologically plausible learning method. Considering the previous architecture, devices are assumed to establish a communication network, where each device has the functionality of sensing and relaying information. The nanonetwork should be able to transport information between two endpoints while maintaining the signal integrity. Concerning the communication scheme, optical wireless communications are a promising candidate due to the possibility of very small and sensitive frontend devices .The results section shows the simulation of nanonetworks and evaluates their performance for different topologies and parameters.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
2019-12-01T00:00:00Z
2021-01-06T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29795
url http://hdl.handle.net/10773/29795
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137676147818496