The geography of metapopulation synchrony in dendritic river networks

Detalhes bibliográficos
Autor(a) principal: Larsen, Stefano
Data de Publicação: 2021
Outros Autores: Comte, Lise, Filipe, Ana Filipa, Fortin, Marie-Josée, Jacquet, Claire
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/21350
Resumo: Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats
id RCAP_8dbd9cac9b523c789608f93049f81eaa
oai_identifier_str oai:www.repository.utl.pt:10400.5/21350
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The geography of metapopulation synchrony in dendritic river networksFish time-seriesfluvial variographymetapopulationsnetwork topologyspatial patternsspatial synchronyDendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitatsJohn WileyRepositório da Universidade de LisboaLarsen, StefanoComte, LiseFilipe, Ana FilipaFortin, Marie-JoséeJacquet, Claire2021-05-26T09:22:53Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/21350engEcology Letters (2021) 24: 791–80110.1111/ele.13699info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:50:48Zoai:www.repository.utl.pt:10400.5/21350Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:05:57.177375Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The geography of metapopulation synchrony in dendritic river networks
title The geography of metapopulation synchrony in dendritic river networks
spellingShingle The geography of metapopulation synchrony in dendritic river networks
Larsen, Stefano
Fish time-series
fluvial variography
metapopulations
network topology
spatial patterns
spatial synchrony
title_short The geography of metapopulation synchrony in dendritic river networks
title_full The geography of metapopulation synchrony in dendritic river networks
title_fullStr The geography of metapopulation synchrony in dendritic river networks
title_full_unstemmed The geography of metapopulation synchrony in dendritic river networks
title_sort The geography of metapopulation synchrony in dendritic river networks
author Larsen, Stefano
author_facet Larsen, Stefano
Comte, Lise
Filipe, Ana Filipa
Fortin, Marie-Josée
Jacquet, Claire
author_role author
author2 Comte, Lise
Filipe, Ana Filipa
Fortin, Marie-Josée
Jacquet, Claire
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Larsen, Stefano
Comte, Lise
Filipe, Ana Filipa
Fortin, Marie-Josée
Jacquet, Claire
dc.subject.por.fl_str_mv Fish time-series
fluvial variography
metapopulations
network topology
spatial patterns
spatial synchrony
topic Fish time-series
fluvial variography
metapopulations
network topology
spatial patterns
spatial synchrony
description Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats
publishDate 2021
dc.date.none.fl_str_mv 2021-05-26T09:22:53Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/21350
url http://hdl.handle.net/10400.5/21350
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ecology Letters (2021) 24: 791–801
10.1111/ele.13699
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley
publisher.none.fl_str_mv John Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131152079912960