Federated learning framework to decentralize mobility forecasting in smart cities scenarios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/38983 |
Resumo: | The new Federated Learning (FL) paradigm has several performance advantages over centralized models. It has lower latency and communication overhead when doing most of the processing on the edge devices, it improves the privacy as data does not travel over the network, it facilitates the handling of heterogeneous data sources and expands scalability. However, the development of FL-based solutions is done through tools usually aimed for specialists as it always requires some programming. To cover this gap, this dissertation proposes a lightweight container-based framework that does not require programming knowledge or experience with machine learning models from its users. This framework, denoted as FedFramework, offers a range of machine learning (ML) algorithms that support the build of prediction engines for edge devices as well as making key algorithms/models available for aggregation and model refinement on the central server. We demonstrate the efficiency of the proposed framework in estimating vehicle mobility in and out of the city, using real data collected by the Aveiro Tech City Living Lab communications infrastructure of the Aveiro city. Moreover, a testbed that integrates the components of the city infrastructure was implemented, where edge devices (Jetsons Nano and Jetson Xavier) are connected to a cloud server. The FedFramework was deployed in this testbed, where its portability, its scalability in devices with few resources, its performance, the impact on the communication between the edge and the server, and the consumption of resources were evaluated. |
id |
RCAP_8de8df4d365c3fa2e8a71f78cd69487a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/38983 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Federated learning framework to decentralize mobility forecasting in smart cities scenariosFederated learningDistributed forecastingSmart cityFL on edge devicesThe new Federated Learning (FL) paradigm has several performance advantages over centralized models. It has lower latency and communication overhead when doing most of the processing on the edge devices, it improves the privacy as data does not travel over the network, it facilitates the handling of heterogeneous data sources and expands scalability. However, the development of FL-based solutions is done through tools usually aimed for specialists as it always requires some programming. To cover this gap, this dissertation proposes a lightweight container-based framework that does not require programming knowledge or experience with machine learning models from its users. This framework, denoted as FedFramework, offers a range of machine learning (ML) algorithms that support the build of prediction engines for edge devices as well as making key algorithms/models available for aggregation and model refinement on the central server. We demonstrate the efficiency of the proposed framework in estimating vehicle mobility in and out of the city, using real data collected by the Aveiro Tech City Living Lab communications infrastructure of the Aveiro city. Moreover, a testbed that integrates the components of the city infrastructure was implemented, where edge devices (Jetsons Nano and Jetson Xavier) are connected to a cloud server. The FedFramework was deployed in this testbed, where its portability, its scalability in devices with few resources, its performance, the impact on the communication between the edge and the server, and the consumption of resources were evaluated.O novo paradigma de Aprendizagem Federada (Federated Learning - FL) tem várias vantagens de desempenho em relação aos modelos centralizados. Tem menor latência e custos de comunicação ao fazer a maior parte do processamento em dispositivos de edge, melhora a privacidade uma vez que os dados não viajam através da rede, facilita o tratamento em fontes de dados heterogéneas e expande a escalabilidade. No entanto, o desenvolvimento de soluções baseadas em FL é feito através de ferramentas destinadas a especialistas, uma vez que requer sempre alguma programação. Para cobrir esta lacuna, esta dissertação propõe uma estrutura leve baseada em containers que não requer conhecimentos de programação ou experiência com modelos de aprendizagem de máquinas dos seus utilizadores. Esta framework, denominada FedFramework, oferece uma gama de algoritmos de aprendizagem de máquinas (ML) que suportam mecanismos de previsão para dispositivos de borda, bem como a disponibilização de algoritmos/modelos chave para a agregação e refinamento do modelo no servidor central. Esta dissertação demonstra a eficiência da framework proposta na estimativa da mobilidade de veículos dentro e fora da cidade, utilizando dados reais recolhidos pela infraestrutura de comunicações do Aveiro Tech City Living Lab da cidade de Aveiro. Além disso, foi implementada uma testbed que integra os componentes que se encontram na infraestrutura da cidade, em que os dispositivos de borda (Jetsons Nano e Jetson Xavier) estão ligados a um servidor na nuvem. O FedFramework foi implementado nesta plataforma, em que foi avaliada a sua portabilidade, a sua escalabilidade em dispositivos com poucos recursos, o seu desempenho, o impacto na comunicação entre a borda e o servidor, e o consumo de recursos.2023-12-27T00:00:00Z2023-12-21T00:00:00Z2023-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38983engValente, Renato Limainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:15:53Zoai:ria.ua.pt:10773/38983Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:10.042427Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
title |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
spellingShingle |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios Valente, Renato Lima Federated learning Distributed forecasting Smart city FL on edge devices |
title_short |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
title_full |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
title_fullStr |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
title_full_unstemmed |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
title_sort |
Federated learning framework to decentralize mobility forecasting in smart cities scenarios |
author |
Valente, Renato Lima |
author_facet |
Valente, Renato Lima |
author_role |
author |
dc.contributor.author.fl_str_mv |
Valente, Renato Lima |
dc.subject.por.fl_str_mv |
Federated learning Distributed forecasting Smart city FL on edge devices |
topic |
Federated learning Distributed forecasting Smart city FL on edge devices |
description |
The new Federated Learning (FL) paradigm has several performance advantages over centralized models. It has lower latency and communication overhead when doing most of the processing on the edge devices, it improves the privacy as data does not travel over the network, it facilitates the handling of heterogeneous data sources and expands scalability. However, the development of FL-based solutions is done through tools usually aimed for specialists as it always requires some programming. To cover this gap, this dissertation proposes a lightweight container-based framework that does not require programming knowledge or experience with machine learning models from its users. This framework, denoted as FedFramework, offers a range of machine learning (ML) algorithms that support the build of prediction engines for edge devices as well as making key algorithms/models available for aggregation and model refinement on the central server. We demonstrate the efficiency of the proposed framework in estimating vehicle mobility in and out of the city, using real data collected by the Aveiro Tech City Living Lab communications infrastructure of the Aveiro city. Moreover, a testbed that integrates the components of the city infrastructure was implemented, where edge devices (Jetsons Nano and Jetson Xavier) are connected to a cloud server. The FedFramework was deployed in this testbed, where its portability, its scalability in devices with few resources, its performance, the impact on the communication between the edge and the server, and the consumption of resources were evaluated. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-27T00:00:00Z 2023-12-21T00:00:00Z 2023-12-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38983 |
url |
http://hdl.handle.net/10773/38983 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137742936866816 |