Characterization of trypsin inhibition by boophilin

Detalhes bibliográficos
Autor(a) principal: Cereija, Tatiana Barros Pereira
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/8874
Resumo: No decurso da evolução, enquanto os vertebrados desenvolviam um complexo sistema para prevenir as perdas de sangue, os hematófagos criavam mecanismos anticoagulantes capazes de contra-atacar a reposta hemostática do hospedeiro, por forma a facilitar a extração, o armazenamento e a digestão do sangue. Muitos destes mecanismos assentam na inibição específica da trombina, proteína que tem um papel central na hemostasia. Apesar do elevado número de inibidores naturais de trombina, apenas uma pequena parte foi caracterizada bioquimicamente e, dentro desta, só alguns inibidores foram estudados de um ponto de vista estrutural. De todos aqueles com estrutura conhecida, a boofilina é o único que possui dois domínios canónicos do tipo Kunitz. No entanto, apesar de possuir domínios canónicos, a boofilina inibe a trombina através de um mecanismo não-canónico, no qual o seu N-terminal é inserido no centro catalítico da trombina enquanto que o domínio C-terminal interage com o exosite I da proteinase. Além disso, ao contrário de todos os outros inibidores caracterizados, a boofilina, em complexo com a trombina, é capaz de interagir com uma proteinase serínica adicional do tipo tripsina. Esta segunda interação envolve unicamente o domínio N-terminal, presumivelmente através do loop reactivo. In vivo, é possível que para além de inibir a trombina, a boofilina seja também capaz de inibir outra proteinase serínica da cascata de coagulação como o fXa, resultando não só na inibição da trombina mas também na diminuição da sua produção. Este aspecto faz da boofilina um bom modelo para a desenvolvimento de novos anticoagulantes terapêuticos. Pretende-se, por isso, clarificar este segundo mecanismo de inibição através do estudo da interação entre a boofilina e a tripsina. A boofilina (D1D2) e o seu domínio N-terminal isolado (D1) foram expressos em Pichia pastoris. Ambas as proteínas foram purificadas por cromatografia de afinidade numa coluna de tripsina seguida, no caso da D1D2, por cromatografia de troca iónica. Uma vez purificadas, a constante de inibição de cada uma das proteínas foi determinada e a D1 foi cristalizada por difusão vapor. Os cristais obtidos eram ortorrômbicos (grupo espacial P212121), tinham uma percentagem invulgarmente baixa de solvente (23%) e difrataram com uma resolução mínima de 1.80 Ǻ. A estrutura cristalográfica da D1 releva uma conformação similar à observada no complexo trombina-boofilina. O complexo tripsina-D1 foi também preparado in vitro e a sua cristalização está em curso.
id RCAP_8e07f7fa56dcc892f0927735b61d336a
oai_identifier_str oai:ria.ua.pt:10773/8874
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Characterization of trypsin inhibition by boophilinBiologia molecularTromboseSangue - CoagulaçãoNo decurso da evolução, enquanto os vertebrados desenvolviam um complexo sistema para prevenir as perdas de sangue, os hematófagos criavam mecanismos anticoagulantes capazes de contra-atacar a reposta hemostática do hospedeiro, por forma a facilitar a extração, o armazenamento e a digestão do sangue. Muitos destes mecanismos assentam na inibição específica da trombina, proteína que tem um papel central na hemostasia. Apesar do elevado número de inibidores naturais de trombina, apenas uma pequena parte foi caracterizada bioquimicamente e, dentro desta, só alguns inibidores foram estudados de um ponto de vista estrutural. De todos aqueles com estrutura conhecida, a boofilina é o único que possui dois domínios canónicos do tipo Kunitz. No entanto, apesar de possuir domínios canónicos, a boofilina inibe a trombina através de um mecanismo não-canónico, no qual o seu N-terminal é inserido no centro catalítico da trombina enquanto que o domínio C-terminal interage com o exosite I da proteinase. Além disso, ao contrário de todos os outros inibidores caracterizados, a boofilina, em complexo com a trombina, é capaz de interagir com uma proteinase serínica adicional do tipo tripsina. Esta segunda interação envolve unicamente o domínio N-terminal, presumivelmente através do loop reactivo. In vivo, é possível que para além de inibir a trombina, a boofilina seja também capaz de inibir outra proteinase serínica da cascata de coagulação como o fXa, resultando não só na inibição da trombina mas também na diminuição da sua produção. Este aspecto faz da boofilina um bom modelo para a desenvolvimento de novos anticoagulantes terapêuticos. Pretende-se, por isso, clarificar este segundo mecanismo de inibição através do estudo da interação entre a boofilina e a tripsina. A boofilina (D1D2) e o seu domínio N-terminal isolado (D1) foram expressos em Pichia pastoris. Ambas as proteínas foram purificadas por cromatografia de afinidade numa coluna de tripsina seguida, no caso da D1D2, por cromatografia de troca iónica. Uma vez purificadas, a constante de inibição de cada uma das proteínas foi determinada e a D1 foi cristalizada por difusão vapor. Os cristais obtidos eram ortorrômbicos (grupo espacial P212121), tinham uma percentagem invulgarmente baixa de solvente (23%) e difrataram com uma resolução mínima de 1.80 Ǻ. A estrutura cristalográfica da D1 releva uma conformação similar à observada no complexo trombina-boofilina. O complexo tripsina-D1 foi também preparado in vitro e a sua cristalização está em curso.During evolution, while vertebrates developed a complex system to prevent blood loss, blood-feeding animals evolved anticoagulant mechanisms to counteract the haemostatic response of their hosts in order to facilitate blood drawing, storage and digestion. Many of these anticoagulant mechanisms rely on the specific inhibition of thrombin, a central enzyme in haemostasis. Although a number of a natural thrombin inhibitors from haematophagous animals have been described only a few have been fully characterised biochemically, and even fewer have been studied from a structural viewpoint. From those structurally characterised to date, only boophilin displays two tandem canonical Kunitz fold domains. However, despite its regular BPTI-like domains, boophilin inhibits thrombin by a non-canonical mechanism, in which its N-terminus inserts into the active site cleft of thrombin, while the C-terminus Kunitz domain interacts with the exosite I of the proteinase. Moreover, in contrast to all the other natural thrombin inhibitors characterised, when in complex with thrombin boophilin retains the capability to interact with an additional (non-thrombin) trypsin-like serine proteinase molecule. In this second interaction only the N-terminal domain is involved, presumably through its conserved reactive-loop. In vivo, it is likely that besides inhibiting thrombin, boophilin can target another serine proteinase of the coagulation cascade, such as fXa. This would result not only in thrombin inhibition, but also in the impairment of thrombin generation, making boophilin a good model for the design of new therapeutic anticoagulants. For this reason, this work aimed at clarifying this second inhibition mechanism by studying the trypsin-boophilin complex. Boophilin (D1D2) and its N-terminal domain (D1) were expressed in Pichia pastoris. Both proteins were purified by immobilized-trypsin affinity chromatography followed, in the case of D1D2, by ion-exchange chromatography. Once purified, the inhibition constant of both proteins was determined and D1 was crystallized by vapour diffusion. The crystals obtained were orthorhombic (space group P212121), had an unusually low solvent content of 23% and diffracted X-rays to beyond 1.80 Ǻ. The crystallographic structure of the first domain of boophilin reveals a conformation of the reactive site loop similar to that observed in the thrombin-boophilin complex. The D1-trypsin complex was also prepared in vitro and its crystallization is underway.Universidade de Aveiro2012-08-01T14:38:48Z2011-01-01T00:00:00Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/8874engCereija, Tatiana Barros Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:15:00Zoai:ria.ua.pt:10773/8874Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:50.394390Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Characterization of trypsin inhibition by boophilin
title Characterization of trypsin inhibition by boophilin
spellingShingle Characterization of trypsin inhibition by boophilin
Cereija, Tatiana Barros Pereira
Biologia molecular
Trombose
Sangue - Coagulação
title_short Characterization of trypsin inhibition by boophilin
title_full Characterization of trypsin inhibition by boophilin
title_fullStr Characterization of trypsin inhibition by boophilin
title_full_unstemmed Characterization of trypsin inhibition by boophilin
title_sort Characterization of trypsin inhibition by boophilin
author Cereija, Tatiana Barros Pereira
author_facet Cereija, Tatiana Barros Pereira
author_role author
dc.contributor.author.fl_str_mv Cereija, Tatiana Barros Pereira
dc.subject.por.fl_str_mv Biologia molecular
Trombose
Sangue - Coagulação
topic Biologia molecular
Trombose
Sangue - Coagulação
description No decurso da evolução, enquanto os vertebrados desenvolviam um complexo sistema para prevenir as perdas de sangue, os hematófagos criavam mecanismos anticoagulantes capazes de contra-atacar a reposta hemostática do hospedeiro, por forma a facilitar a extração, o armazenamento e a digestão do sangue. Muitos destes mecanismos assentam na inibição específica da trombina, proteína que tem um papel central na hemostasia. Apesar do elevado número de inibidores naturais de trombina, apenas uma pequena parte foi caracterizada bioquimicamente e, dentro desta, só alguns inibidores foram estudados de um ponto de vista estrutural. De todos aqueles com estrutura conhecida, a boofilina é o único que possui dois domínios canónicos do tipo Kunitz. No entanto, apesar de possuir domínios canónicos, a boofilina inibe a trombina através de um mecanismo não-canónico, no qual o seu N-terminal é inserido no centro catalítico da trombina enquanto que o domínio C-terminal interage com o exosite I da proteinase. Além disso, ao contrário de todos os outros inibidores caracterizados, a boofilina, em complexo com a trombina, é capaz de interagir com uma proteinase serínica adicional do tipo tripsina. Esta segunda interação envolve unicamente o domínio N-terminal, presumivelmente através do loop reactivo. In vivo, é possível que para além de inibir a trombina, a boofilina seja também capaz de inibir outra proteinase serínica da cascata de coagulação como o fXa, resultando não só na inibição da trombina mas também na diminuição da sua produção. Este aspecto faz da boofilina um bom modelo para a desenvolvimento de novos anticoagulantes terapêuticos. Pretende-se, por isso, clarificar este segundo mecanismo de inibição através do estudo da interação entre a boofilina e a tripsina. A boofilina (D1D2) e o seu domínio N-terminal isolado (D1) foram expressos em Pichia pastoris. Ambas as proteínas foram purificadas por cromatografia de afinidade numa coluna de tripsina seguida, no caso da D1D2, por cromatografia de troca iónica. Uma vez purificadas, a constante de inibição de cada uma das proteínas foi determinada e a D1 foi cristalizada por difusão vapor. Os cristais obtidos eram ortorrômbicos (grupo espacial P212121), tinham uma percentagem invulgarmente baixa de solvente (23%) e difrataram com uma resolução mínima de 1.80 Ǻ. A estrutura cristalográfica da D1 releva uma conformação similar à observada no complexo trombina-boofilina. O complexo tripsina-D1 foi também preparado in vitro e a sua cristalização está em curso.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2011
2012-08-01T14:38:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/8874
url http://hdl.handle.net/10773/8874
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137510144606208