Image Sentiment Analysis of Social Media Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/11847 |
Resumo: | Often a picture is worth a thousand words, and this is a small statement that represents one of the biggest challenges in the Image Sentiment Analysis area. The main theme of this dissertation is the Image Sentiment Analysis of social media, mainly from Twitter, so that it is identified as situations that represent risks (identification of negative situations) or that become a risk (prediction of negative situations). Despite the diversity of work done in the area of image sentiment analysis, it is still a challenging task. Several factors contribute to the difficulty, both more global factors likewise sociocultural issues, and issues within the scope of the analysis of feeling in images, such as the difficulty in finding reliable and properly labeled data to be used, as well as factors faced during the classification, for example, it is normal to associate images with darker colors and low brightness to negative feelings, after all, most are like that, but some cases escape this rule, and it is these cases that affect the accuracy of the developed models. However, in order to overcome these problems faced in classification, a multitasking model was developed, which will consider the entire image information, information from the salient areas in the images, and the facial expressions of faces contained in the images, and textual information, so that each component complements the other during classification. During the experiments it was possible to observe that the use of the proposed models can bring advantages for the classification of feeling in images and even work around some problems evidenced in existing works, such as the irony of the text. Therefore, this work aims to present the state of the art and the study carried out, in order to enable the presentation and implementation of the proposed model and carrying out the experiments and discussion of the results obtained, in order to verify the effectiveness of what was proposed. Finally, conclusions about the work done and future work will be presented. |
id |
RCAP_8e1eb3b2c5e6abb0f85db01bec000d42 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/11847 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Image Sentiment Analysis of Social Media DataConvolutional Neural NetworkDatasetFacial Expression RecognitionImage ClassificationImage Sentiment AnalysisMultimodalSalient AreasText ClassificationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaOften a picture is worth a thousand words, and this is a small statement that represents one of the biggest challenges in the Image Sentiment Analysis area. The main theme of this dissertation is the Image Sentiment Analysis of social media, mainly from Twitter, so that it is identified as situations that represent risks (identification of negative situations) or that become a risk (prediction of negative situations). Despite the diversity of work done in the area of image sentiment analysis, it is still a challenging task. Several factors contribute to the difficulty, both more global factors likewise sociocultural issues, and issues within the scope of the analysis of feeling in images, such as the difficulty in finding reliable and properly labeled data to be used, as well as factors faced during the classification, for example, it is normal to associate images with darker colors and low brightness to negative feelings, after all, most are like that, but some cases escape this rule, and it is these cases that affect the accuracy of the developed models. However, in order to overcome these problems faced in classification, a multitasking model was developed, which will consider the entire image information, information from the salient areas in the images, and the facial expressions of faces contained in the images, and textual information, so that each component complements the other during classification. During the experiments it was possible to observe that the use of the proposed models can bring advantages for the classification of feeling in images and even work around some problems evidenced in existing works, such as the irony of the text. Therefore, this work aims to present the state of the art and the study carried out, in order to enable the presentation and implementation of the proposed model and carrying out the experiments and discussion of the results obtained, in order to verify the effectiveness of what was proposed. Finally, conclusions about the work done and future work will be presented.Muitas vezes uma imagem vale mais que mil palavras, e esta é uma pequena afirmação que representa um dos maiores desafios da área de classificação do sentimento contido nas imagens. O principal tema desta dissertação é a realização da análise do sentimento contido em imagens das mídias sociais, principalmente do Twitter, de modo que possam ser identificadas as situações que representam riscos (identificação de situações negativas) ou as quais possam se tornar um (previsão de situações negativas). Apesar da diversidade de trabalhos feitos na área da análise de sentimento em imagens, ainda é uma tarefa desafiante. Diversos fatores contribuem para a dificuldade , tantos fatores mais globais como questões socioculturais, quanto questões do próprio âmbito de análise de sentimento em imagens, como a dificuldade em achar dados confiáveis e devidamente etiquetados para serem utilizados, quanto fatores enfrentados durante a classificação, como por exemplo, é normal associar imagens com cores mais escuras e pouco brilho à sentimentos negativos, afinal a maioria é assim, entretanto há casos que fogem dessa regra, e são esses casos que afetam a precisão dos modelos desenvolvidos. Porém, visando contornar esses problemas enfrentados na classificação, foi desenvolvido um modelo multitarefas, o qual irá considerar informações globais, áreas salientes nas imagens, expressões faciais de rostos contidos nas imagens e informação textual, de modo que cada componente se complemente durante a classificação. Durante os experimentos foi possível observar que o uso dos modelos propostos podem trazer vantagens para a classificação do sentimento em imagens e até mesmo contornar alguns problemas evidenciados nos trabalhos já existentes, como por exemplo a ironia do texto. Assim sendo, este trabalho tem como objetivo apresentar o estado da arte e o estudo realizado, de modo a possibilitar a apresentação e implementação do modelo multitarefas proposto e realização das experiências e discussão dos resultados obtidos, de forma a verificar a eficácia do método proposto. Por fim, as conclusões sobre o trabalho feito e trabalho futuro serão apresentados.Alexandre, Luís Filipe Barbosa de AlmeidauBibliorumCavalini, Diandre de Paula2022-01-17T16:46:10Z2021-10-142021-07-302021-10-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11847TID:202858316enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:35Zoai:ubibliorum.ubi.pt:10400.6/11847Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:32.576813Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Image Sentiment Analysis of Social Media Data |
title |
Image Sentiment Analysis of Social Media Data |
spellingShingle |
Image Sentiment Analysis of Social Media Data Cavalini, Diandre de Paula Convolutional Neural Network Dataset Facial Expression Recognition Image Classification Image Sentiment Analysis Multimodal Salient Areas Text Classification Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Image Sentiment Analysis of Social Media Data |
title_full |
Image Sentiment Analysis of Social Media Data |
title_fullStr |
Image Sentiment Analysis of Social Media Data |
title_full_unstemmed |
Image Sentiment Analysis of Social Media Data |
title_sort |
Image Sentiment Analysis of Social Media Data |
author |
Cavalini, Diandre de Paula |
author_facet |
Cavalini, Diandre de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Alexandre, Luís Filipe Barbosa de Almeida uBibliorum |
dc.contributor.author.fl_str_mv |
Cavalini, Diandre de Paula |
dc.subject.por.fl_str_mv |
Convolutional Neural Network Dataset Facial Expression Recognition Image Classification Image Sentiment Analysis Multimodal Salient Areas Text Classification Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Convolutional Neural Network Dataset Facial Expression Recognition Image Classification Image Sentiment Analysis Multimodal Salient Areas Text Classification Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Often a picture is worth a thousand words, and this is a small statement that represents one of the biggest challenges in the Image Sentiment Analysis area. The main theme of this dissertation is the Image Sentiment Analysis of social media, mainly from Twitter, so that it is identified as situations that represent risks (identification of negative situations) or that become a risk (prediction of negative situations). Despite the diversity of work done in the area of image sentiment analysis, it is still a challenging task. Several factors contribute to the difficulty, both more global factors likewise sociocultural issues, and issues within the scope of the analysis of feeling in images, such as the difficulty in finding reliable and properly labeled data to be used, as well as factors faced during the classification, for example, it is normal to associate images with darker colors and low brightness to negative feelings, after all, most are like that, but some cases escape this rule, and it is these cases that affect the accuracy of the developed models. However, in order to overcome these problems faced in classification, a multitasking model was developed, which will consider the entire image information, information from the salient areas in the images, and the facial expressions of faces contained in the images, and textual information, so that each component complements the other during classification. During the experiments it was possible to observe that the use of the proposed models can bring advantages for the classification of feeling in images and even work around some problems evidenced in existing works, such as the irony of the text. Therefore, this work aims to present the state of the art and the study carried out, in order to enable the presentation and implementation of the proposed model and carrying out the experiments and discussion of the results obtained, in order to verify the effectiveness of what was proposed. Finally, conclusions about the work done and future work will be presented. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-14 2021-07-30 2021-10-14T00:00:00Z 2022-01-17T16:46:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/11847 TID:202858316 |
url |
http://hdl.handle.net/10400.6/11847 |
identifier_str_mv |
TID:202858316 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136404565917696 |