Study and dimensioning of a Tesla turbine using computational tools

Detalhes bibliográficos
Autor(a) principal: Simões, João Henrique Bernardo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30393
Resumo: The Tesla turbine was invented in the beginning of the XX century but only after almost a century the scientific community began to show some interest for this Nikola Tesla invention. The Tesla turbine sets itself apart from other turbines by the fact that it has discs instead of blades. The mechanisms by which this turbine can generate power from a flow is unique, the available torque is a result of the viscous forces exerted by the fluid on the discs. The purpose of this dissertation is to study the Tesla turbine and analyze its performance under different configurations in order to develop a better understanding on how a Tesla turbine can be designed to promote power output. The Tesla turbine is tested with methane as the working fluid and fixed inlet and outlet pressures (60 and 30 bar respectively). In this dissertation, a parametric study is presented using computational fluid dynamic (CFD) tools. A 3D model of the turbine was developed. The model was meshed, and the mesh was tested and validated using mesh independence test and Richardson extrapolation method. Energy and turbulence models were selected, and the fluid was defined as a real gas through the Redlich-Kwong equation of state. Proper solution methods were selected, and different runs were performed. The Tesla turbine was tested with different values for the disc diameter, the inter-disc gaps, the rotor angular velocities and the number of discs. From this study it is concluded that the turbine generates more power with large discs. When the diameter of a disc is increased, its angular velocity should decrease to promote power. The mass flow rate increases as the angular velocity decreases. Thin inter-disc gaps perform better for small discs at low angular velocities while for large discs or high angular velocities thicker disc gaps are recommended.
id RCAP_8ec767bad3c5809fd0b163b7113c75e6
oai_identifier_str oai:ria.ua.pt:10773/30393
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Study and dimensioning of a Tesla turbine using computational toolsTesla turbineComputational fluid dynamicsPower conversionNumerical simulationThermodynamicsANSYS/FluentThe Tesla turbine was invented in the beginning of the XX century but only after almost a century the scientific community began to show some interest for this Nikola Tesla invention. The Tesla turbine sets itself apart from other turbines by the fact that it has discs instead of blades. The mechanisms by which this turbine can generate power from a flow is unique, the available torque is a result of the viscous forces exerted by the fluid on the discs. The purpose of this dissertation is to study the Tesla turbine and analyze its performance under different configurations in order to develop a better understanding on how a Tesla turbine can be designed to promote power output. The Tesla turbine is tested with methane as the working fluid and fixed inlet and outlet pressures (60 and 30 bar respectively). In this dissertation, a parametric study is presented using computational fluid dynamic (CFD) tools. A 3D model of the turbine was developed. The model was meshed, and the mesh was tested and validated using mesh independence test and Richardson extrapolation method. Energy and turbulence models were selected, and the fluid was defined as a real gas through the Redlich-Kwong equation of state. Proper solution methods were selected, and different runs were performed. The Tesla turbine was tested with different values for the disc diameter, the inter-disc gaps, the rotor angular velocities and the number of discs. From this study it is concluded that the turbine generates more power with large discs. When the diameter of a disc is increased, its angular velocity should decrease to promote power. The mass flow rate increases as the angular velocity decreases. Thin inter-disc gaps perform better for small discs at low angular velocities while for large discs or high angular velocities thicker disc gaps are recommended.A turbina de Tesla foi inventada no início do século XX, mas só quase um século depois a comunidade científica começou a mostrar algum interesse por esta invenção de Nikola Tesla. A turbina de Tesla diferencia-se de outras turbinas por ter discos em vez de pás. O mecanismo pelo qual esta turbina converte energia cinética em trabalho a partir de um fluxo mássico é único, em que o torque útil resulta do efeito direto das forças viscosas exercidas pelo fluido nos discos, ou seja, do atrito. O objetivo desta dissertação é estudar a turbina de Tesla e analisar o seu desempenho para diferentes configurações, de modo a desenvolver uma melhor compreensão dos mecanismos de conversão energética e desse modo estabelecer critérios de dimensionamento que possam ser úteis ao nível da engenharia. Neste estudo considerou-se o metano como fluido de trabalho, e pressões de entrada e saída respetivamente de 60 e 30 bar. Nesta dissertação, é apresentado um estudo paramétrico realizado usando ferramentas de mecânica dos fluidos computacional (CFD). Para o efeito foi desenvolvido um modelo base digital 3D. Foram desenvolvidas, testadas e validadas malhas computacionais adequadas ao estudo a desenvolver e aos meios computacionais disponíveis. A malha foi testada e validada recorrendo a testes de independência de malha e ao método de extrapolação de Richardson. Foram incorporados modelos para o transporte de energia e para a simulação do efeito da turbulência. As propriedades do fluido de trabalho foram determinadas usando uma equação de estado para gases reais (equação de Redlich-Kwong). O modelo de turbina de Tesla desenvolvido foi testado para diferentes valores de diâmetro dos discos, espaçamento entre discos, velocidades angulares do rotor (velocidade de rotação) e número de discos. A partir deste estudo conclui-se que a turbina gera mais potência com discos de maior diâmetro. Verificou-se ainda que para otimizar a potência extraída, o aumento do diâmetro dos discos deve ser acompanhado da redução da sua velocidade de rotação, que a um aumento da velocidade de rotação corresponde um aumento do caudal de fluido admitido. Conclui-se ainda que espaçamentos mais reduzidos entre os discos resultam melhor para discos de menor diâmetro operando a baixas velocidades de rotação, enquanto que para discos de maior diâmetro, ou velocidades de rotação mais elevadas espaçamentos maiores são recomendados.2021-01-28T19:42:03Z2018-12-17T00:00:00Z2018-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30393TID:202237877engSimões, João Henrique Bernardoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:45Zoai:ria.ua.pt:10773/30393Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:30.686765Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Study and dimensioning of a Tesla turbine using computational tools
title Study and dimensioning of a Tesla turbine using computational tools
spellingShingle Study and dimensioning of a Tesla turbine using computational tools
Simões, João Henrique Bernardo
Tesla turbine
Computational fluid dynamics
Power conversion
Numerical simulation
Thermodynamics
ANSYS/Fluent
title_short Study and dimensioning of a Tesla turbine using computational tools
title_full Study and dimensioning of a Tesla turbine using computational tools
title_fullStr Study and dimensioning of a Tesla turbine using computational tools
title_full_unstemmed Study and dimensioning of a Tesla turbine using computational tools
title_sort Study and dimensioning of a Tesla turbine using computational tools
author Simões, João Henrique Bernardo
author_facet Simões, João Henrique Bernardo
author_role author
dc.contributor.author.fl_str_mv Simões, João Henrique Bernardo
dc.subject.por.fl_str_mv Tesla turbine
Computational fluid dynamics
Power conversion
Numerical simulation
Thermodynamics
ANSYS/Fluent
topic Tesla turbine
Computational fluid dynamics
Power conversion
Numerical simulation
Thermodynamics
ANSYS/Fluent
description The Tesla turbine was invented in the beginning of the XX century but only after almost a century the scientific community began to show some interest for this Nikola Tesla invention. The Tesla turbine sets itself apart from other turbines by the fact that it has discs instead of blades. The mechanisms by which this turbine can generate power from a flow is unique, the available torque is a result of the viscous forces exerted by the fluid on the discs. The purpose of this dissertation is to study the Tesla turbine and analyze its performance under different configurations in order to develop a better understanding on how a Tesla turbine can be designed to promote power output. The Tesla turbine is tested with methane as the working fluid and fixed inlet and outlet pressures (60 and 30 bar respectively). In this dissertation, a parametric study is presented using computational fluid dynamic (CFD) tools. A 3D model of the turbine was developed. The model was meshed, and the mesh was tested and validated using mesh independence test and Richardson extrapolation method. Energy and turbulence models were selected, and the fluid was defined as a real gas through the Redlich-Kwong equation of state. Proper solution methods were selected, and different runs were performed. The Tesla turbine was tested with different values for the disc diameter, the inter-disc gaps, the rotor angular velocities and the number of discs. From this study it is concluded that the turbine generates more power with large discs. When the diameter of a disc is increased, its angular velocity should decrease to promote power. The mass flow rate increases as the angular velocity decreases. Thin inter-disc gaps perform better for small discs at low angular velocities while for large discs or high angular velocities thicker disc gaps are recommended.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-17T00:00:00Z
2018-12-17
2021-01-28T19:42:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30393
TID:202237877
url http://hdl.handle.net/10773/30393
identifier_str_mv TID:202237877
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137680811884544