Instrumentation and control of a target fixed-wing drone for launch and capture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155375 |
Resumo: | This work was developed within the scope of the CAPTURE project, in which a collaborative network was intended to be built in which a quadcopter drone would help a fixed-wing drone perform landing and takeoff maneuvers. The study of small fixed-wing unmanned aerial vehicles (UAVs) were presented, as well as their attitude control, instrumentation, and trajectory tracking. One of the goals of this dissertation was to model a real vehicle, specifically the Easy Glider 4. All the work was developed based on this vehicle, for which it was necessary to use the XFLR software to obtain its aerodynamic response and thus obtain a more accurate model and, consequently, its control. The main challenges of this dissertation were related to obtaining the full dynamic model (with the aerodynamic coefficients included), the control techniques that would be used to deal with their nonlinearities, and their integration with a path following algorithm. Two types of attitude controllers were developed: a linear controller based on PI and a nonlinear controller based on the backstepping technique. An external loop was then added to make the UAV follow a specific path. Two different techniques were implemented: a path following algorithm that would make the vehicle follow a vector field around the intended trajectory and an adaptive algorithm capable of dealing with uncertainties in the environment, such as wind with unknown direction and intensity. |
id |
RCAP_8ee3759930fcf1ee04eead47d5c3ae13 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155375 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Instrumentation and control of a target fixed-wing drone for launch and captureUAVPIDBacksteppingPath followingVector fieldAdaptiveDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis work was developed within the scope of the CAPTURE project, in which a collaborative network was intended to be built in which a quadcopter drone would help a fixed-wing drone perform landing and takeoff maneuvers. The study of small fixed-wing unmanned aerial vehicles (UAVs) were presented, as well as their attitude control, instrumentation, and trajectory tracking. One of the goals of this dissertation was to model a real vehicle, specifically the Easy Glider 4. All the work was developed based on this vehicle, for which it was necessary to use the XFLR software to obtain its aerodynamic response and thus obtain a more accurate model and, consequently, its control. The main challenges of this dissertation were related to obtaining the full dynamic model (with the aerodynamic coefficients included), the control techniques that would be used to deal with their nonlinearities, and their integration with a path following algorithm. Two types of attitude controllers were developed: a linear controller based on PI and a nonlinear controller based on the backstepping technique. An external loop was then added to make the UAV follow a specific path. Two different techniques were implemented: a path following algorithm that would make the vehicle follow a vector field around the intended trajectory and an adaptive algorithm capable of dealing with uncertainties in the environment, such as wind with unknown direction and intensity.Este trabalho é desenvolvido no âmbito do projecto CAPTURE , em que se pretende construir uma rede colaborativa em que um drone quadricóptero ajude um drone de asa fixa a realizar manobras de aterragem e descolagem. Será apresentado o estudo e modelação de pequenos veículos não tripulados de asa fixa (UAV), bem como o seu controlo de atitude, instrumentação e seguimento de trajetória. Um dos objectivos desta dissertação é a modelação de um veículo real, mais especificamente o Easy glider 4. Todo o trabalho será desenvolvido com base neste veículo, para isso, é necessário utilizar o software XFLR para obter sua resposta aerodinâmica e assim obter uma modelação mais precisa e, consequentemente, o seu controlo. Devido à complexidade da dinâmica do UAV, os principais desafios desta dissertação estão relacionados com a obtenção do modelo dinâmico, às técnicas de controlo que serão utilizadas para lidar com suas não linearidades e a sua integração com um algoritmo de path following. Serão desenvolvidos dois tipos de controladores de atitude: Um controlador linear baseado no PID e um controlador não linear baseado na técnica de backstepping. Um loop externo é então adicionado para que o UAV siga um determinado caminho. Serão implementadas duas ténicas diferentes: Um algoritmo de path following que fará o veículo seguir um campo vectorial em volta da trajetória pretendida e um algoritmo adaptativo capaz de lidar com incertezas do meio ambiente, tais como vento com direção e amplitude desconhecidas.Guerreiro, NunoRUNCarvalho, João Miguel Ferreira de2023-07-17T15:39:45Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155375enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:37:56Zoai:run.unl.pt:10362/155375Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:02.367437Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Instrumentation and control of a target fixed-wing drone for launch and capture |
title |
Instrumentation and control of a target fixed-wing drone for launch and capture |
spellingShingle |
Instrumentation and control of a target fixed-wing drone for launch and capture Carvalho, João Miguel Ferreira de UAV PID Backstepping Path following Vector field Adaptive Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Instrumentation and control of a target fixed-wing drone for launch and capture |
title_full |
Instrumentation and control of a target fixed-wing drone for launch and capture |
title_fullStr |
Instrumentation and control of a target fixed-wing drone for launch and capture |
title_full_unstemmed |
Instrumentation and control of a target fixed-wing drone for launch and capture |
title_sort |
Instrumentation and control of a target fixed-wing drone for launch and capture |
author |
Carvalho, João Miguel Ferreira de |
author_facet |
Carvalho, João Miguel Ferreira de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Guerreiro, Nuno RUN |
dc.contributor.author.fl_str_mv |
Carvalho, João Miguel Ferreira de |
dc.subject.por.fl_str_mv |
UAV PID Backstepping Path following Vector field Adaptive Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
UAV PID Backstepping Path following Vector field Adaptive Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
This work was developed within the scope of the CAPTURE project, in which a collaborative network was intended to be built in which a quadcopter drone would help a fixed-wing drone perform landing and takeoff maneuvers. The study of small fixed-wing unmanned aerial vehicles (UAVs) were presented, as well as their attitude control, instrumentation, and trajectory tracking. One of the goals of this dissertation was to model a real vehicle, specifically the Easy Glider 4. All the work was developed based on this vehicle, for which it was necessary to use the XFLR software to obtain its aerodynamic response and thus obtain a more accurate model and, consequently, its control. The main challenges of this dissertation were related to obtaining the full dynamic model (with the aerodynamic coefficients included), the control techniques that would be used to deal with their nonlinearities, and their integration with a path following algorithm. Two types of attitude controllers were developed: a linear controller based on PI and a nonlinear controller based on the backstepping technique. An external loop was then added to make the UAV follow a specific path. Two different techniques were implemented: a path following algorithm that would make the vehicle follow a vector field around the intended trajectory and an adaptive algorithm capable of dealing with uncertainties in the environment, such as wind with unknown direction and intensity. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-07-17T15:39:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155375 |
url |
http://hdl.handle.net/10362/155375 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138146641772544 |