Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/41187 |
Resumo: | Mining impacts will affect local populations to different degrees. Impacts range from removal of habitats and possible energy sources to pollution and smaller-scale alterations in local habitats that, depending on the degree of disturbance, can lead to extinction of local communities. While there is a shortage or even lack of studies investigating impacts that resemble those caused by actual mining activity, the information available on the potential long-lasting impacts of seabed mining emphasise the need for effective environmental management plans. These plans should include efforts to mitigate deep-sea mining impact such as avoidance, minimisation and potentially restoration actions, to maintain or encourage reinstatement of a resilient ecosystem. A wide range of mitigation and restoration actions for deep-sea ecosystems at risk were addressed. From an ecological point of view, the designation of set-aside areas (refuges) is of utmost importance as it appears to be the most comprehensive and precautionary approach, both for well-known and lesser studied areas. Other actions range from the deployment of artificial substrates to enhance faunal colonisation and survival to habitat recreation, artificial eutrophication, but also spatial and temporal management of mining operations, as well as optimising mining machine construction to minimise plume size on the sea floor, toxicity of the return plume and sediment compression. No single action will suffice to allow an ecosystem to recover, instead combined mitigation/restoration actions need to be considered, which will depend on the specific characteristics of the different mining habitats and the resources hosted (polymetallic sulphides, polymetallic nodules and cobalt-rich ferromanganese crusts). However, there is a lack of practical experience regarding mitigation and restoration actions following mining impacts, which severely hamper their predictability and estimation of their possible effect and success. We propose an extensive list of actions that could be considered as recommendations for best environmental practice. The list is not restricted and, depending on the characteristics of the site, additional actions can be considered. For all actions presented here, further research is necessary to fully encompass their potential and contribution to possible mitigation or restoration of the ecosystem. |
id |
RCAP_8f8c320a8c012d479ee45d74bf96e46b |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/41187 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Miningdeep seaminingrestorationmitigationimpactsassisted recovery(re-)colonisationMining impacts will affect local populations to different degrees. Impacts range from removal of habitats and possible energy sources to pollution and smaller-scale alterations in local habitats that, depending on the degree of disturbance, can lead to extinction of local communities. While there is a shortage or even lack of studies investigating impacts that resemble those caused by actual mining activity, the information available on the potential long-lasting impacts of seabed mining emphasise the need for effective environmental management plans. These plans should include efforts to mitigate deep-sea mining impact such as avoidance, minimisation and potentially restoration actions, to maintain or encourage reinstatement of a resilient ecosystem. A wide range of mitigation and restoration actions for deep-sea ecosystems at risk were addressed. From an ecological point of view, the designation of set-aside areas (refuges) is of utmost importance as it appears to be the most comprehensive and precautionary approach, both for well-known and lesser studied areas. Other actions range from the deployment of artificial substrates to enhance faunal colonisation and survival to habitat recreation, artificial eutrophication, but also spatial and temporal management of mining operations, as well as optimising mining machine construction to minimise plume size on the sea floor, toxicity of the return plume and sediment compression. No single action will suffice to allow an ecosystem to recover, instead combined mitigation/restoration actions need to be considered, which will depend on the specific characteristics of the different mining habitats and the resources hosted (polymetallic sulphides, polymetallic nodules and cobalt-rich ferromanganese crusts). However, there is a lack of practical experience regarding mitigation and restoration actions following mining impacts, which severely hamper their predictability and estimation of their possible effect and success. We propose an extensive list of actions that could be considered as recommendations for best environmental practice. The list is not restricted and, depending on the characteristics of the site, additional actions can be considered. For all actions presented here, further research is necessary to fully encompass their potential and contribution to possible mitigation or restoration of the ecosystem.Frontiers MediaRepositório da Universidade de LisboaCuvelier, DaphneGollner, SabineJones, Daniel O. B.Kaiser, StefanieArbizu, Pedro MartínezMenzel, LenaMestre, Nélia C.Morato, TelmoPham, ChristopherPradillon, FlorencePurser, AutunRaschka, UweSarrazin, JozéeSimon-Lledó, ErikStewart, Ian M.Stuckas, HeikoSweetman, Andrew K.Colaço, Ana2020-01-19T20:35:20Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/41187eng2296-774510.3389/fmars.2018.00467info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:37:54Zoai:repositorio.ul.pt:10451/41187Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:53:08.461898Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
title |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
spellingShingle |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining Cuvelier, Daphne deep sea mining restoration mitigation impacts assisted recovery (re-)colonisation |
title_short |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
title_full |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
title_fullStr |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
title_full_unstemmed |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
title_sort |
Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining |
author |
Cuvelier, Daphne |
author_facet |
Cuvelier, Daphne Gollner, Sabine Jones, Daniel O. B. Kaiser, Stefanie Arbizu, Pedro Martínez Menzel, Lena Mestre, Nélia C. Morato, Telmo Pham, Christopher Pradillon, Florence Purser, Autun Raschka, Uwe Sarrazin, Jozée Simon-Lledó, Erik Stewart, Ian M. Stuckas, Heiko Sweetman, Andrew K. Colaço, Ana |
author_role |
author |
author2 |
Gollner, Sabine Jones, Daniel O. B. Kaiser, Stefanie Arbizu, Pedro Martínez Menzel, Lena Mestre, Nélia C. Morato, Telmo Pham, Christopher Pradillon, Florence Purser, Autun Raschka, Uwe Sarrazin, Jozée Simon-Lledó, Erik Stewart, Ian M. Stuckas, Heiko Sweetman, Andrew K. Colaço, Ana |
author2_role |
author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Cuvelier, Daphne Gollner, Sabine Jones, Daniel O. B. Kaiser, Stefanie Arbizu, Pedro Martínez Menzel, Lena Mestre, Nélia C. Morato, Telmo Pham, Christopher Pradillon, Florence Purser, Autun Raschka, Uwe Sarrazin, Jozée Simon-Lledó, Erik Stewart, Ian M. Stuckas, Heiko Sweetman, Andrew K. Colaço, Ana |
dc.subject.por.fl_str_mv |
deep sea mining restoration mitigation impacts assisted recovery (re-)colonisation |
topic |
deep sea mining restoration mitigation impacts assisted recovery (re-)colonisation |
description |
Mining impacts will affect local populations to different degrees. Impacts range from removal of habitats and possible energy sources to pollution and smaller-scale alterations in local habitats that, depending on the degree of disturbance, can lead to extinction of local communities. While there is a shortage or even lack of studies investigating impacts that resemble those caused by actual mining activity, the information available on the potential long-lasting impacts of seabed mining emphasise the need for effective environmental management plans. These plans should include efforts to mitigate deep-sea mining impact such as avoidance, minimisation and potentially restoration actions, to maintain or encourage reinstatement of a resilient ecosystem. A wide range of mitigation and restoration actions for deep-sea ecosystems at risk were addressed. From an ecological point of view, the designation of set-aside areas (refuges) is of utmost importance as it appears to be the most comprehensive and precautionary approach, both for well-known and lesser studied areas. Other actions range from the deployment of artificial substrates to enhance faunal colonisation and survival to habitat recreation, artificial eutrophication, but also spatial and temporal management of mining operations, as well as optimising mining machine construction to minimise plume size on the sea floor, toxicity of the return plume and sediment compression. No single action will suffice to allow an ecosystem to recover, instead combined mitigation/restoration actions need to be considered, which will depend on the specific characteristics of the different mining habitats and the resources hosted (polymetallic sulphides, polymetallic nodules and cobalt-rich ferromanganese crusts). However, there is a lack of practical experience regarding mitigation and restoration actions following mining impacts, which severely hamper their predictability and estimation of their possible effect and success. We propose an extensive list of actions that could be considered as recommendations for best environmental practice. The list is not restricted and, depending on the characteristics of the site, additional actions can be considered. For all actions presented here, further research is necessary to fully encompass their potential and contribution to possible mitigation or restoration of the ecosystem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2020-01-19T20:35:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/41187 |
url |
http://hdl.handle.net/10451/41187 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2296-7745 10.3389/fmars.2018.00467 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134469318246400 |