PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/8304 |
Resumo: | Bioelectricity drives several processes in the human body. The development of new materials that can deliver electrical stimuli is gaining increasing attention in the field of tissue engineering. In this work, novel, highly electrically conductive nanofibers made of poly [2,20 - m-(phenylene)-5,50 -bibenzimidazole] (PBI) have been manufactured by electrospinning and then coated with cross-linked poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT:PSS) by spin coating or dip coating. These scaffolds have been characterized by scanning electron microscopy (SEM) imaging and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The electrical conductivity was measured by the four-probe method at values of 28.3 S·m−1 for spin coated fibers and 147 S·m−1 for dip coated samples, which correspond, respectively, to an increase of about 105 and 106 times in relation to the electrical conductivity of PBI fibers. Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) cultured on the produced scaffolds for one week showed high viability, typical morphology and proliferative capacity, as demonstrated by calcein fluorescence staining, 40 ,6-diamidino-2-phenylindole (DAPI)/Phalloidin staining and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay. Therefore, all fiber samples demonstrated biocompatibility. Overall, our findings highlight the great potential of PEDOT:PSS-coated PBI electrospun scaffolds for a wide variety of biomedical applications, including their use as reliable in vitro models to study pathologies and the development of strategies for the regeneration of electroactive tissues or in the design of new electrodes for in vivo electrical stimulation protocols. |
id |
RCAP_9029238e9a9d8348b97c3861dd762d95 |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/8304 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applicationsMesenchymal stem cellsPEDOT:PSSPBIElectrospinningNanofibersElectroconductiveBioelectricity drives several processes in the human body. The development of new materials that can deliver electrical stimuli is gaining increasing attention in the field of tissue engineering. In this work, novel, highly electrically conductive nanofibers made of poly [2,20 - m-(phenylene)-5,50 -bibenzimidazole] (PBI) have been manufactured by electrospinning and then coated with cross-linked poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT:PSS) by spin coating or dip coating. These scaffolds have been characterized by scanning electron microscopy (SEM) imaging and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The electrical conductivity was measured by the four-probe method at values of 28.3 S·m−1 for spin coated fibers and 147 S·m−1 for dip coated samples, which correspond, respectively, to an increase of about 105 and 106 times in relation to the electrical conductivity of PBI fibers. Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) cultured on the produced scaffolds for one week showed high viability, typical morphology and proliferative capacity, as demonstrated by calcein fluorescence staining, 40 ,6-diamidino-2-phenylindole (DAPI)/Phalloidin staining and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay. Therefore, all fiber samples demonstrated biocompatibility. Overall, our findings highlight the great potential of PEDOT:PSS-coated PBI electrospun scaffolds for a wide variety of biomedical applications, including their use as reliable in vitro models to study pathologies and the development of strategies for the regeneration of electroactive tissues or in the design of new electrodes for in vivo electrical stimulation protocols.MDPIIC-OnlineSordini, LauraSilva, João C.Garrudo, Fábio F. F.Rodrigues, Carlos A. V.Marques, Ana C.Linhardt, Robert J.Cabral, Joaquim S. M.Morgado, JorgeFerreira, Frederico Castelo2023-03-31T11:16:14Z2021-08-192021-08-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/8304engSordini, L.; Silva, J.C.; Garrudo, F.F.F.; Rodrigues, C.A.V.; Marques, A.C.; Linhardt, R.J.; Cabral, J.M.S.; Morgado, J.; Ferreira, F.C. PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers 2021, 13, 2786. https://doi.org/10.3390/polym131627862073-436010.3390/polym13162786info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:04Zoai:iconline.ipleiria.pt:10400.8/8304Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:04.128918Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
title |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
spellingShingle |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications Sordini, Laura Mesenchymal stem cells PEDOT:PSS PBI Electrospinning Nanofibers Electroconductive |
title_short |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
title_full |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
title_fullStr |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
title_full_unstemmed |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
title_sort |
PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications |
author |
Sordini, Laura |
author_facet |
Sordini, Laura Silva, João C. Garrudo, Fábio F. F. Rodrigues, Carlos A. V. Marques, Ana C. Linhardt, Robert J. Cabral, Joaquim S. M. Morgado, Jorge Ferreira, Frederico Castelo |
author_role |
author |
author2 |
Silva, João C. Garrudo, Fábio F. F. Rodrigues, Carlos A. V. Marques, Ana C. Linhardt, Robert J. Cabral, Joaquim S. M. Morgado, Jorge Ferreira, Frederico Castelo |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Sordini, Laura Silva, João C. Garrudo, Fábio F. F. Rodrigues, Carlos A. V. Marques, Ana C. Linhardt, Robert J. Cabral, Joaquim S. M. Morgado, Jorge Ferreira, Frederico Castelo |
dc.subject.por.fl_str_mv |
Mesenchymal stem cells PEDOT:PSS PBI Electrospinning Nanofibers Electroconductive |
topic |
Mesenchymal stem cells PEDOT:PSS PBI Electrospinning Nanofibers Electroconductive |
description |
Bioelectricity drives several processes in the human body. The development of new materials that can deliver electrical stimuli is gaining increasing attention in the field of tissue engineering. In this work, novel, highly electrically conductive nanofibers made of poly [2,20 - m-(phenylene)-5,50 -bibenzimidazole] (PBI) have been manufactured by electrospinning and then coated with cross-linked poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT:PSS) by spin coating or dip coating. These scaffolds have been characterized by scanning electron microscopy (SEM) imaging and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The electrical conductivity was measured by the four-probe method at values of 28.3 S·m−1 for spin coated fibers and 147 S·m−1 for dip coated samples, which correspond, respectively, to an increase of about 105 and 106 times in relation to the electrical conductivity of PBI fibers. Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) cultured on the produced scaffolds for one week showed high viability, typical morphology and proliferative capacity, as demonstrated by calcein fluorescence staining, 40 ,6-diamidino-2-phenylindole (DAPI)/Phalloidin staining and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay. Therefore, all fiber samples demonstrated biocompatibility. Overall, our findings highlight the great potential of PEDOT:PSS-coated PBI electrospun scaffolds for a wide variety of biomedical applications, including their use as reliable in vitro models to study pathologies and the development of strategies for the regeneration of electroactive tissues or in the design of new electrodes for in vivo electrical stimulation protocols. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-19 2021-08-19T00:00:00Z 2023-03-31T11:16:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/8304 |
url |
http://hdl.handle.net/10400.8/8304 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sordini, L.; Silva, J.C.; Garrudo, F.F.F.; Rodrigues, C.A.V.; Marques, A.C.; Linhardt, R.J.; Cabral, J.M.S.; Morgado, J.; Ferreira, F.C. PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers 2021, 13, 2786. https://doi.org/10.3390/polym13162786 2073-4360 10.3390/polym13162786 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137002312957952 |